EU PVSEC 2019
36th European Photovoltaic Solar Energy Conference and Exhibition
The Innovation Platform for the global PV Solar Sector

Conference Programme
Exhibition Catalogue

09 - 13 September 2019
Marseille Chanot Convention and Exhibition Centre, Marseille, France

www.photovoltaic-conference.com
www.photovoltaic-exhibition.com
TABLE OF CONTENTS

Chair's Message 1
Message from the Technical Programme Chair 3
Conference Programme 5
- Monday, 09 September 6
- Tuesday, 10 September 25
- Wednesday, 11 September 43
- Thursday, 12 September 67
- Friday, 13 September 85
- Visual Presentations 95

Authors Index 185

Parallel Events 239
- French National Day - Highlighting French PV Innovation 243
- Trends in PV Development - Self-Consumption and Innovative Distributed Applications 244
- Eco-Design, Eco Labeling, Green Public Procurement - Sustainability Leadership for the Terawatt Age 247
- Research meets Business - Solar Industry Forum 248
- Photovoltaics | Forms | Landscapes - Energy as a Landscape Infrastructure 251
- Research meets Business - Solar Industry Forum 252
- New Solutions of Energy 254
- Innovations in Photovoltaic Materials 256
- Research meets Business - Solar Mobility Forum 258
- Probabilistic PV Production Forecasts: Technics and Use-Cases 261
- The EU Support Instruments - Unlocking Developing Markets 262
- BIPV - Moving into the Next Phase 264
- Standardization of the Protocols for Emerging PV Technologies 266
- Advanced PV Energy Rating for Emerging Technologies 269

Exhibition 273
- List of Exhibitors - alphabetical 275
- Exhibition Layout with Exhibitors by stand number 315

General Information 323
- Venue 324
- Access 327
- Conference Proceedings 328
- Prizes & Awards 329
- Networking 333
- Services 334
- Instructions for Authors and Presenters 334

Acknowledgements 337
- Committees 338
- Supporters 348
- Sponsors 351
- Media Partners 352
- Conference Programme Outline of the week inside back cover

Please note: The explanation of the Session Code used for the Conference Programme is available together with the Programme Outline on the inside of the back cover of this booklet.

The content represents the status as of 14 August 2019
Photovoltaics: Writing the next chapter

EU PVSEC has a special meaning for me as it was my first experience of an international conference as a PhD student more than 20 years ago. It also has a special meaning for the Photovoltaic Energy actors as the unique European crossroad in between different specialties: scientific, technical, financial, policy and markets.

This 36th conference in Marseille of what has become a truly world-class event will be rich with opportunities to discover the latest research results and data and gain insights into one of the most promising advances in PV technologies- all in one of France’s sunniest climates.

The transition to a sustainable energy future will not be possible without a carbon-free energy sector dominated by renewables. As a major contributor to a cleaner and safer future for the planet, PV technologies will play a key role in transforming our energy systems while enabling a massive shift to carbon-free energy. As costs have come down, renewable energy is being rolled out at record levels. However, because emission levels are still far from reaching the targets set in the Paris Agreement, there is still much progress to be made to get renewables into the energy mix at an even faster pace.

Global investment in renewable-energy projects dropped slightly in 2018. And yet, the same year, more than 100 GWp of PV power was installed worldwide, evidence of the maturity of PV technologies. To continue to speed up the energy transition, PV must be addressed holistically alongside grid-integration technologies. These include tools to enable greater grid flexibility, battery-based or hydrogen storage, and digital systems. The goal is to provide the backbone for tomorrow’s massive “smart-grid-ready” PV power plants. Consumers will benefit from cost reductions, of course. But so will high-added-value applications like advanced building-integrated photovoltaics and emerging transportation concepts.

This expanded vision for the next chapter in PV history will call for innovative approaches beyond just PV production. The entire value chain will have to be addressed, from new materials through to system-level advances. Currently, the primary challenges are high-efficiency cells, modules offering extended lifespans, efficient power electronics, multiscale smart grid modelling, and, finally, eco-design to ensure recyclability and more economical use of critical materials.
A strong and coordinated worldwide industry needs to be the collector of all these innovation subjects and Europe has the challenge to play a role again. And the previously described technology ruptures should be an opportunity. Thus, more that an energy solution for the future PV production, integration and related services will represent a considerable worldwide potential for jobs and for increasing prosperity for all the countries.

EU PVSEC 2019 will be the place to start new conversations on these and other topics and get the latest updates on the PV advanced world.

I am looking forward to an impressive programme of this 36th EU PVSEC conference and I am confident that you will find ample learning and networking opportunities at an event orchestrated to unlock your creativity and broaden your vision.

Dr. Florence Lambert
EU PVSEC 2019 General Chair
Director of CEA Liten
(the Laboratory for Innovation in new Energy Technologies and Nanomaterials)

WELCOME FROM THE TECHNICAL PROGRAMME CHAIR

I am pleased to welcome you to the 36th European Photovoltaic Solar Energy Conference. This week follows closely from a record-breaking hot summer in much of the world which has provided a timely reminder of the urgency of our task to rapidly grow the renewable energy sector. I hope you have all had a relaxing break and are refreshed and ready to take up the challenge once again. Personally, I attended a competition for masters (read older) sports enthusiasts, and can humbly vouch for the truth in the adage ‘you can’t teach an old dog new tricks’. Let us all together this week show the out-of-date carbon emitting power industry that we have all the new tricks and it is time for them to retire.

The conference programme was updated in this year’s call for abstracts, with some additions. From the perspective of materials and devices, we have added topics to encourage further input in the fields of perovskite materials and tandem device concepts. At the system scale, we have included new topics on storage, professional applications of PV and grid integration issues. As well as closely following your own field’s oral and visual sessions, I also encourage you all to attend the plenary sessions that cover the broad range of all the thematic topics of the conference.

We have also introduced some novelties in the poster and student awards. To further highlight the importance of visual presentations, there will be a poster awards opening on Monday at which Poster Awards Committee members welcome and inform presenters. Additionally, a visual closing session on Thursday will provide delegates with the opportunity to follow short presentations of the winning posters. The student awards nominees have been shortlisted and the final selection of winners this year will be made taking the presentation delivery into consideration as well as the scientific content. Both awards ceremonies will be held during the closing session on Friday as usual.

I look forward to meeting you during an informative and stimulating week in Marseille.

Dr. Robert Kenny
European Commission Joint Research Centre
EU PVSEC Technical Programme Chair
CONFERENCE PROGRAMME

Plenary, Oral and Visual Sessions
CONFERENCE PROGRAMME

MONDAY, 09 SEPTEMBER 2019

Conference Programme

Please note, that this Programme may be subject to alteration and the organisers reserve the right to do so without giving prior notice. The current version of the Programme is available at www.photovoltaic-conference.com.

(i) = invited

Monday, 09 September 2019

CONFERENCE OPENING

08:30 - 09:30 Scientific Opening

PLENARY SESSION 1AP.1

08:30 - 09:30 Routes to High Efficiency in Photovoltaics

Chairpersons:

Robert Kenny
European Commission Joint Research Centre, Italy

Antonio Martí Vega
UPM, Spain

1AP.1.1 III-V/Si Three-Junction Solar Cells Reaching 30% Efficiency Using Smart Stack Technology

AIST, Tsukuba, Japan
R. Müller, P. Beutel, D. Lackner, J. Benick, M. Hermle & F. Dimroth
Fraunhofer ISE, Freiburg, Germany

1AP.1.2 Interconnection 1, 2, 3, 4.0: Buildup towards a PV Technology Hero?

imec, Genk, Belgium
R. Van Dyck & I. El-Chami
KU Leuven, Belgium
P. Nivelle
UHasselt, Diepenbeek, Belgium
R. Bervoets
IPTE, Genk, Belgium

09:30 - 10:00 Becquerel Prize Ceremony

Chaired by

Joachim Luther
Chair Becquerel Prize Committee

Becquerel Prize Winner 2019

Pierre Verlinden
Consultant, Non-Executive Director to PV companies, Visiting Professor at Sun Yat-sen University (Guangzhou)

Laudatio

Stefan Glunz
Fraunhofer ISE, Freiburg, Germany

Delivery of the Prize by

Piotr Szymanski
European Commission Joint Research Centre, Director of Energy, Transport and Climate

10:00 - 11:00 Opening Addresses

- Florence Lambert
  EU PVSEC General Chair
  Director of CEA Liten, the Laboratory for Innovation in new Energy Technologies and Nanomaterials, France

- Laurent Michel
  Director General of Energy and Climate, Ministry for the Ecological and Inclusive Transition, France

- Piotr Szymanski
  European Commission Joint Research Centre, Director of Energy, Transport and Climate

- Walburga Hemetsberger
  Chief Executive Officer, SolarPower Europe

11:00 - 12:15 Moderated Panel Discussion (page 8)
11:00 - 12:15  Moderated Panel Discussion

Topic: The Future of PV Manufacturing in Europe

Panellists

- **Andreas Bett**
  Director, Fraunhofer ISE, Germany
- **Roch Drozdowski-Strehl**
  General Director, IPVF, France
- **Paolo Frankl**
  Head of Renewable Energy Division, IEA - International Energy Agency
- **Philippe Malbranche**
  General Director, CEA INES
- **Stefan Rinck**
  CEO, Singulus, Germany
- **Eicke Weber**
  prel. Chair ESMC (European Solar Manufacturing Council)
- **Heinz Ossenbrink,**
  Former European Commission Joint Research Centre
- **Representative French Industry / Developer (i)**

*This programme reflects confirmations as of 26 August 2019. For the latest programme news please check www.photovoltaic-conference.com*
<table>
<thead>
<tr>
<th>Time</th>
<th>Session 1</th>
<th>Session 2</th>
<th>Session 3</th>
<th>Session 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30</td>
<td>Opening</td>
<td>Lunch</td>
<td>Lunch</td>
<td>Poster</td>
</tr>
<tr>
<td>09:00</td>
<td>T1.1 Audit 3</td>
<td>T3.1 Audit 3</td>
<td>T3.2 Audit 3</td>
<td>4AV.1 Audit 3</td>
</tr>
<tr>
<td>11:30</td>
<td>Break</td>
<td>T3.2 Audit 3</td>
<td>T3.3 Audit 3</td>
<td>4AV.2 Audit 3</td>
</tr>
<tr>
<td>14:00</td>
<td>T3.3 Audit 3</td>
<td>T3.4 Audit 3</td>
<td>T3.5 Audit 3</td>
<td>4AV.3 Audit 3</td>
</tr>
<tr>
<td>16:30</td>
<td>Break</td>
<td>T3.5 Audit 3</td>
<td>T3.6 Audit 3</td>
<td>4AV.4 Audit 3</td>
</tr>
</tbody>
</table>

**1 New Materials and Concepts for Photovoltaic Devices**
- T1.1 Fundamental Studies
- T1.2 New Materials and Concepts for Cells and Modules

**2 Silicon Materials and Cells**
- T2.1 Feedstock, Crystallisation, Wafering, Defect Engineering
- T2.2 Homojunction Solar Cells
- T2.3 Heterojunction Solar Cells
- T2.4 Thin Film and Foil-Based Si Solar Cells
- T2.5 Characterisation & Simulation of Si Cells
- T2.6 Manufacturing & Production of Si Cells

**3 Perovskites, other Non-Silicon-Based Photovoltaics and Multi-Junction Devices**
- T3.1 Perovskites Based Photovoltaics
- T3.2 CIGS, CdTe and Related Thin Film Solar Cells
- T3.3 Organic and Dye-Sensitised Devices
- T3.4 III-V and Related Compound Semiconductor Based Devices
- T3.5 Tandems

**4 Photovoltaic Modules and BoS Components**
- T4.1 PV Module Design, Manufacture, Performance and Reliability
- T4.2 Inverters and Balance of System Components
- T4.3 Sustainability and Recycling
**ORAL PRESENTATIONS 1AO.1**

**13:30 - 15:00** Energy Conversion Mechanisms and Materials Characterisation

**Chairpersons:**

- Daniel Ory  
  EDF R&D, France
- Masafumi Yamaguchi  
  Toyota Technological Institute, Japan

1AO.1  From the Hot Carrier Solar Cell to the Intermediate Band Solar Cell, Passing through the Multiple-Exciton Generation Solar Cell and Then Back to the Hot Carrier Solar Cell: The Dance of the Electro-Chemical Potentials

A. Martí Vega  
UPM, Madrid, Spain

1AO.1.1  Electrical Multi-Probe Investigation of Nanowires for Solar Energy Conversion

Ilmenau University of Technology, Germany

1AO.1.2  Simple Thermionic Model of Hot Carrier Solar Cell with Semi-Infinite Energy Filtering

I. Konovalov & B. Ploss  
University of Applied Science, Jena, Germany

1AO.1.3  Carrier-Resolved Photo-Hall

O. Gunawan, D.M. Bishop, Y. Virgus & Y.S. Lee  
IBM, Yorktown Heights, United States  
S.R. Pae & B. Shin  
KAIST, Daejeon, Republic of Korea  
J.H. Noh  
Korea University, Seoul, Republic of Korea  
N.J. Jeon  
KRICT, Daejeon, Republic of Korea

1AO.1.4  GaAs Subcell with Hybrid Quantum Objects for Triple-Junction Solar Cells

M.A. Mintairov, V.V. Evstropov, S.A. Mintairov, M.Z. Shvarts & N.A. Kalyuzhnny  
RAS / Ioffe, St. Petersburg, Russia

1AO.1.5  A Thermophotovoltaic (TPV) Micro-Combusor Using Selective Emitters

Y.-H. Li  
NCTU, Tainan, Taiwan  
P. Parashar, P. Yu & A. Lin  
NCTU, Hsinchu, Taiwan  
K.-H. Pen  
NCKU, Tainan, Taiwan

**ORAL PRESENTATIONS 2AO.4**

**13:30 - 15:00** Defects in Crystalline Silicon

**Chairpersons:**

- Anis Jouini  
  CEATECH-INES, France
- Ronald Sinton  
  Sinton Instruments, United States

2AO.4.1  Insights on the Electronic Parameterisation of Defects in Silicon Obtained from the Formation of the Defect Repository

M.K. Juhl & F.E. Rougieux  
UNSW Australia, Sydney, Australia  
F.D. Heinz, T. Niewelt & M.C. Schubert  
Fraunhofer ISE, Freiburg, Germany  
G. Coletti  
ECN part of TNO, Petten, The Netherlands  
C. Sun & D. Macdonald  
ANU, Canberra, Australia  
J.J. Krich  
University of Ottawa, Canada

2AO.4.2  Investigating Defect States in Monocrystalline Silicon with Temperature and Injection Dependent Lifetime Spectroscopy

M. Syre Wiig, R. Søndenå, E.S. Marstein & H. Haug  
Institute for Energy Technology, Kjeller, Norway

2AO.4.3  Assessing a Two-Step Approach to Eliminate LeTID in p-Type PERC Solar Cells

C. Sen, C. Chan, P. Hamer, M. Wright, U. Varshney, S. Liu, A. Samadi, A. Ciesla, C.M. Chong, B. Hallam & M. Abbott  
UNSW Australia, Sydney, Australia
2AO.4.4  Student Award Finalist Presentation: Impact of Silicon Nitride Film Properties on Hydrogen In-Diffusion into Crystalline Silicon
D. Bredemeier, D.C. Walter & J. Schmidt
ISFH, Emmerthal, Germany
R. Heller
HZDR, Dresden, Germany

2AO.4.5  On the Influence of Advection Cooling during Degradation and Regeneration of Boron-Oxygen Defects Using High Intensity Illumination
A. Herguth, A. Graf & G. Hahn
University of Konstanz, Germany

2AO.4.6  Light-Induced Degradation in Boron-Doped Cz Silicon PERC: Excessive Enhancement by Dark Annealing
F. Fertig, R. Lantzsch, F. Kersten, F. Frühau, J. Lindroos, C. Taubitz, M. Schütze & J.W. Müller
Hanwha Q CELLS, Bitterfeld-Wolfen, Germany

ORAL PRESENTATIONS 3AO.7
13:30 - 15:00  Progress in CIGS Modules

Chairpersons:
Alessandro Romeo
University of Verona, Italy

Bernhard Dimmler
NICE Solar Energy, Germany

3AO.7.1  Absorber Optimization in CIGSSe Modules with a Sputtered ZnOS Buffer Layer at 19 % Efficiency
Avancis, Munich, Germany

3AO.7.2  ZnMgO Buffer Deposition in Commercial-Size CIGS PV Modules
Solibro, Bitterfeld-Wolfen, Germany
O. Lundberg, J. Joel & L. Stolt
Solibro Research, Uppsala, Sweden

3AO.7.3  Alkali Incorporation in High-Efficiency Cu(In,Ga)Se2 Solar Cells on Flexible Substrates
R. Carron, S. Nishiwaki, T. Feurer, R. Hertwig, E. Avancini, J. Löckinger, S.-C. Yang, S. Buecheler & A.N. Tiwari
EMPA, Dubendorf, Switzerland

3AO.7.4  Development of an Industrially Compatible Process for Light Weight CIGS Modules on Polymer Substrates by Optimizing Deposition Parameters
V. A. Chard, M. J. Bualet, F. Donsanti & D. Camilleri
IPVF, Palaiseau, France
R. Würz & F. Kessler
ZSW, Stuttgart, Germany
D. Lincot
CNRS, Palaiseau, France

3AO.7.5  Fabrication of High-Efficient and Flexible Cu(In,Ga)Se2 Thin-Film Photovoltaics on Stainless Steel Substrates: Impacts of Various Impurity Barriers and Their Structures on Device Performances
KIER, Daejeon, Republic of Korea

3AO.7.6  Humidity Barriers and Environmentally Stable Front Contacts for Flexible Thin Film Modules
P.J. Bolt, F.J. van den Bruele, D. Roosen-Melsen, H. Steijvers & H. Linden
TNO, Eindhoven, The Netherlands
G. Torres Sevilla & Y.E. Romanyuk
EMPA, Dubendorf, Switzerland

13:30 - 15:00  POSTER AWARDS KICK-OFF
ORAL PRESENTATIONS 1AO.2
15:15 - 16:45 Conversion Efficiency Limits and Materials Characterisation

Chairpersons:
Jean-Francois Guillemoles
CNRS, France

Thomas Hannapel
Ilmenau University of Technology, Germany

1AO.2.1 Student Award Finalist Presentation: The Ultimate Potential of Reconfigurable Modules for Increasing the Energy Yield of Partially Shaded Urban Photovoltaics Systems
A. Calcabrini, R. Weegink, O. Isabella & M. Zeman
Delft University of Technology, The Netherlands

1AO.2.2 Efficiency Limits and Performance Limiting Factors of Inorganic, Organic and Hybrid Perovskite Solar Cells
Y. Kato, S. Fujimoto, M. Kozawa & H. Fujiwara
Gifu University, Japan

1AO.2.3 Effects of High Photon Gas Density and Radiative Efficiency on Upper Bounds of Energy Conversion Efficiency in Single-Crystal Solar Cells
S.J. Babcock, N.P. Irvin, C.B. Honsberg & R.R. King
Arizona State University, Tempe, United States

1AO.2.4 Multi-Dimensional Luminescence Imaging: Accessing to Transport Properties
D. Ory, A. Bercegol, O. Fournier & J. Rousset
EDF R&D, Palaiseau, France

1AO.2.5 Photocurrent Spectra and Transport Characterizations on Halide Perovskites Thin Films
H.-J. Lin, A. Rebai & S. Cacovich
IPVF, Palaiseau, France

1AO.2.6 C-AFM and KPFM Characterization of poly-Si/SiOx/c-Si Passivated Contact Structure
C. Marchat
IPVF, Palaiseau, France
A. Morisset & R. Cabal
CEA, Le Bourget du Lac, France
J. Alvarez, M.E. Gueunier-Farret & J.-P. Kleider
CNRS, Gif-sur-Yvette, France

ORAL PRESENTATIONS 2AO.5
15:15 - 16:45 Crystallizing Silicon for Photovoltaics

Chairpersons:
Brett Hallam
UNSW Australia, Australia

João M. Serra
University of Lisbon, Portugal

2AO.5.1 Silicon Ingot Growth from Nitride Crucibles Made from Kerf-Loss Silicon during Diamond Wire Sawing
NTU, Taipei, Taiwan

2AO.5.2 Solid State Diffusion of Metallic Impurities from Crucible and Coating Material into Crystalline Silicon Ingots for PV Application
Fraunhofer IISB, Erlangen, Germany
C. Kranert
Fraunhofer THM, Freiberg, Germany

2AO.5.3 Enhanced Material Quality in SMART mono-Si Block Cast Ingots by Introduction of Functional Defects
Fraunhofer ISE, Freiburg, Germany

2AO.5.4 Adopting Continuous Czochralski (CCz) Process in Production by Retrofitting Czochralski (Cz) Monocrystalline Puller in the Field
J. He & D. Wang
J A Solar, Xingtai, China
R. Malen, S. Keohane & H. Xu
GT Advanced Technologies, Hudson, United States
2AO.5.5  On the Progress in Data Science Approaches for High-Quality Multicrystalline Silicon Ingot for Solar Cells
Nagoya University, Japan
K. Kutsukake
RIKEN, Tokyo, Japan
Y. Shimizu & Y. Ohno
Tohoku University, Sendai, Japan

2AO.5.6  Combined Experimental and Numerical Investigation of Cz Growth Conditions on Thermal Donors Generation
M. Albaric, M. Chatelain, J. Veirman, D. Pelletier & M. Benmansour
CEA, Le Bourget du Lac, France

ORAL PRESENTATIONS 3AO.8
15:15 - 16:45  New Concepts in Chalcogenides

Chairpersons:
Wiltraud Wischmann
ZSW, Germany
Marc Meuris
imec, Belgium

3AO.8.1  Ultrathin CIGS Solar Cells with Passivated and Highly Reflective Back Contacts – Results from the ARCIGS-M Consortium
M. Edoff & W.-C. Chen
Uppsala University, Sweden
I. Gordon
imec, Leuven, Belgium
B. Vermang
imec, Genk, Belgium
P.J. Bolt, J. van Deelen & M. Simor
TNO, Eindhoven, The Netherlands
D. Flandre & J. Lontchi
UCL, Louvain-la-Neuve, Belgium
M. Kovacic & J. Krc
University of Ljubljana, Slovenia
L. Gouillart, S. Collin & N. Naghavi
CNRS, Palaiseau, France
M. Jubault
EDF R&D - IPVF, Palaiseau, France

3AO.8.2  Student Award Finalist Presentation: Submicron CIGS Solar Cells: Feasibly towards the Absorption Limit
N. Rezaei, O. Isabella, P. Procel Moya & M. Zeman
Delft University of Technology, The Netherlands
Z. Vroon
TNO, Geleen, The Netherlands

3AO.8.3  Direct Fabrication of Ultrathin Cu(In,Ga)Se2 Solar Cells on Ag-Based Reflective Back Contacts
L. Gouillart, A. Cattoni, J. Goffard, N. Naghavi & S. Collin
CNRS, Palaiseau, France
W.-C. Chen, L. Riekehr, J. Keller & M. Edoff
Uppsala University, Sweden
M. Jubault
EDF R&D - IPVF, Palaiseau, France

3AO.8.4  Time-Resolved Photoluminescence Study of the Influence of Na on the Non-Radiative Recombination in Cu-Poor, Thermally Co-Evaporated Cu(In,Ga)Se2 Solar Cells
M. Morawski, M. Maiberg & R. Scheer
Martin Luther University Halle-Wittenberg, Halle (Saale), Germany

3AO.8.5  Co-Evaporated Cu(In,Ga)S2 Thin Films: Process Issues, Material Properties and Device Performance
A. Thomere & R. Bodeux
EDF R&D, Palaiseau, France
C. Guillot-Deudon, N. Barreau, M.T. Caldes & A. Lafond
University of Nantes, France

3AO.8.6  invited

Y. Zhou
Obducat Technologies, Malmö, Sweden
R. Vignal
Arcelor Mittal, Maizières-lès-Metz, France
V. Gusak
Solbro Research, Uppsala, Sweden
E. Niemi & K. Takei
Midsummer, Järfälla, Sweden
S. Bose, J.M.V. Cunha, T.S. Lopes, P.A. Fernandes, P. Anacleto, S. Sadewasser & P.M.P. Salomé
INL, Braga, Portugal
CONFERENCE PROGRAMME
MONDAY, 09 SEPTEMBER 2019

VISUAL PRESENTATIONS 4AV.1
15:15 - 16:45 PV Module Design, Manufacture, Performance and Reliability (I)

Detailed information on this Session is presented in the section entitled ‘Visual Presentations’.

ORAL PRESENTATIONS 1AO.3
17:00 - 18:30 Light Management and Spectral Conversion

Chairpersons:
Igor Konovalov
University of Applied Sciences Jena, Germany

James Patrick Connolly
CNRS/GeePs, France

1AO.3.1 Front Side Structures in TiO2 for Crystalline Silicon Solar Cells: Which Effects Can They Achieve?
L. Stevens, H. Hauser, O. Höhn, N. Tucher, C. Wellens & B. Bläsi
Fraunhofer ISE, Freiburg, Germany
C. Stauch & R. Jahn
Fraunhofer ISC, Würzburg, Germany
C. Müller
University of Freiburg, Germany

1AO.3.2 80% Average Absorption in Ultrathin Hot Carriers Solar Cells with Tetrahedron Nanostructures
J. Goffard, M. Giteau, A. Cattoni, N. Bardou, L. Lombez, J.-F. Guillemoles & S. Collin
CNRS, Palaiseau, France
S. Boyer-Richard, A. Beck, A. Le Corre & O. Durand
INSA-Rennes, France

1AO.3.3 Surface Nanostructuring and Physical Properties of In2S3 Films Using Argon Plasma Treatment
V.F. Gremenok & E.P. Zaretskaya
NASB, Minsk, Belarus
S.P. Zimin, A.S. Pipkova & L.A. Mazaletskiy
Yaroslavl State University, Russia
A.N. Pyatiltski, V.A. Saladukha & T.V. Piatlitskaya
JSC “INTEGRAL”, Minsk, Belarus

1AO.3.4 Inkjet-Printed Three-Dimensional Colloidal Photonic Crystals for Structural Coloration of Solar Cells
R. Speranza, T. Huhtamäki, S. Lepikko, R.H.A. Ras & J. Halme
Aalto University, Finland

1AO.3.5 Indoor Energy Micro-Sources for Energetically Autonomous Nomadic Devices
B. Politi, S. Parola, A. Gademyer, Y. Cuminal, A. Foucaran & N. Camara
IES, Montpellier, France
M. Piquemil
Bureaux A Partager, Paris, France

1AO.3.6 Characterization of Spectral Conversion Layer Comprising Luminescent Down-Shifting Eu-Doped Phosphors Enhanced by Plasmonics Silver Nanoparticles
NTUT, Taipei, Taiwan

ORAL PRESENTATIONS 2AO.6
17:00 - 18:30 Thin Silicon Solar Cells

Chairpersons:
Paola Delli Veneri
ENEA, Italy

Martin P. Bellmann
SINTEF, Norway

2AO.6.1 Sawing Damage Control for Thin Flexible Si Solar Cells
K. Onishi, R. Yokogawa, T. Nishihara, T. Kamioka & A. Ogura
Meiji University, Kawasaki, Japan
K. Nakamura & Y. Ohshita
Toyota Technological Institute, Nagoya, Japan
T. Kawatsu & T. Nagai
Komatsu NTC, Nanto, Japan
N. Yamada & Y. Miyashita
Nagaoka University of Technology, Japan

2AO.6.2 Correlating Template Properties with the Quality of Epitaxially Grown Silicon Wafers
M. Drießen, T. Fehrenbach, L. Kirste, C. Weiss & S. Janz
Fraunhofer ISE, Freiburg, Germany
MONDAY, 09 SEPTEMBER 2019

2AO.6.3 Dopant-Free Asymmetric Thin Film Crystalline Silicon Heterojunction Solar Cells
J. He, W. Wang, S. Karuturi & Y. Wan
ANU, Canberra, Australia

2AO.6.4 Bifacial Amorphous Si Quintuple-Junction Solar Cells for IoT Devices with High Open-Circuit Voltage of 3.5V under Low Illuminance
M. Konagai & R. Sasaki
Tokyo City University, Japan

2AO.6.5 The Fabrication of Thin Film Silicon Radial Junction Solar Cells Built on the VLS Grown Silicon Nanowire Array
M. Müller, J. Stuchlik, M. Ledinsky, A. Fejfar & J. Kocka
ASCR, Prague, Czech Republic

2AO.6.6 Highly Efficient Transparent a-Si:H Solar Cells for Light Harvesting under Indoor Illumination using Collection Enhancing Layer
G. Kim, M.A. Park, S.H. Jang & J.W. Lim
ETRI, Daejeon, Republic of Korea
M. Shin
Korea Aerospace University, Goyang, Republic of Korea

ORAL PRESENTATIONS 3AO.9

17:00 - 18:30 Buffers, Absorbers and Interfaces in CIGS Devices

Chairpersons:

Thomas Dalibor
Avancis, Germany

Takahiro Wada
Ryukoku University, Japan

3AO.9.1 Special Introductory Presentation: Recent CIGS Photovoltaics Research Activity at AIST
AIST, Tsukuba, Japan
N. Taguchi
AIST, Ikeda, Japan
S. Niki
NEDO, Kawasaki, Japan

3AO.9.2 Post-Sulfurization of Cu(In,Ga)Se2 Absorbers: General Observations and Effect of Cu Content on Solar Cell Performance
J. Keller, M. Edoff & C. Platzer-Björkman
Uppsala University, Sweden
O. Bilousov & O. Lundberg
Solibro Research, Uppsala, Sweden

3AO.9.3 Zn(O,S) Buffer Layers for Cu(In,Ga)Se2 Thin Film Solar Cells by Magnetron Sputtering
M. Zutter, J. Virtuso, P. Anacleto, D. Colombara, L. Yasin,
M. Alves, O. Bondarchuk & S. Sadewasser
INL, Braga, Portugal
D. Fuster, J.M. García & F. Briones
CSIC, Madrid, Spain
R. Wächter
NICE Solar Energy, Schwäbisch Hall, Germany
O. Kiowski & D. Hariskos
ZSW, Stuttgart, Germany

3AO.9.4 Characterization of High Bandgap CIGS Solar Cells and Corresponding Absorber/Buffer Interfaces: Results of the EFFCIS Project
W. Witte, D. Hariskos, O. Kiowski, S. Paetel & M. Powalla
ZSW, Stuttgart, Germany
Martin Luther University, Halle, Germany
D. Hauschild, V. van Maris, L. Weinhardt, C. Heske, X. Jin,
R. Schneider, D. Gerthsen, J. Seeger & M. Hetterich
Karlsruhe Institute of Technology,
Eggenstein-Leopoldshafen, Germany
J. Keutgen & O. Cojocaru-Mirédin
RWTH Aachen University, Germany
E. Ghorbani & K. Albe
Technical University of Darmstadt, Germany
M. Nikolaeva, J. Marquez-Prieto, M. Krause, S. Schäfer,
C.J. Hages, D. Abou-Ras, T. Unold & R. Mainz
HZB, Berlin, Germany
P. Eraerts, T.P. Niesen, R. Lechner, T. Dalibor & J. Palm
Avancis, Munich, Germany
M. Schweiger & B. Dimmler
NICE Solar Energy, Schwäbisch Hall, Germany
R. Hunger, T. Henke & P. Kratzert
Solibro, Bitterfeld-Wolfen, Germany

3AO.9.5 Modified Three-Stage Coevaporation Process for High Efficiency High-Ga Content CIGS Solar Cells
W. Li, J. Zheng, S. Xu, M. Chen, G. Zhong, W. Li, Y. Feng,
H. Luo & C. Yang
CAS, Shenzhen, China
VISUAL PRESENTATIONS 4AV.2

17:00 - 18:30 PV Module Design, Manufacture, Performance and Reliability/Inverters and Balance of System Components/ Sustainability and Recycling

Detailed information on this Session is presented in the section entitled ‘Visual Presentations’.

NOTES

Conference Programme
MONDAY, 09 SEPTEMBER 2019

1 New Materials and Concepts for Photovoltaic Devices
   T1.1 Fundamental Studies
   T1.2 New Materials and Concepts for Cells and Modules

2 Silicon Materials and Cells
   T2.1 Feedstock, Crystallisation, Wafering, Defect Engineering
   T2.2 Homojunction Solar Cells
   T2.3 Heterojunction Solar Cells
   T2.4 Thin Film and Foil-Based Si Solar Cells
   T2.5 Characterisation & Simulation of Si Cells
   T2.6 Manufacturing & Production of Si Cells

3 Perovskites, other Non-Silicon-Based Photovoltaics and Multi-Junction Devices
   T3.1 Perovskites Based Photovoltaics
   T3.2 CI(G)S, CdTe and Related Thin Film Solar Cells
   T3.3 Organic and Dye-Sensitised Devices
   T3.4 III-V and Related Compound Semiconductor Based Devices
   T3.5 Tandems

4 Photovoltaic Modules and BoS Components
   T4.1 PV Module Design, Manufacture, Performance and Reliability
   T4.2 Inverters and Balance of System Components
   T4.3 Sustainability and Recycling

5 PV Systems and Storage – Modelling, Design, Operation and Performance
   T5.1 Solar Resource and Forecasting
   T5.2 Design and Installation of PV Systems
   T5.3 Operation, Performance and Maintenance of PV Systems
   T5.4 Storage
   T5.5 Concentrators and PV for Space Applications

6 PV Applications and Integration
   T6.1 PV on/in Buildings, Infrastructure, Landscape, Water and Nature
   T6.2 Professional Applications of PV
   T6.3 PV Driven Energy Management and System Integration
ORAL PRESENTATIONS 2BO.1

08:30 - 10:00 PERX Silicon Solar Cells

Chairpersons:
Marco Ernst
ANU, Australia

Ralf Preu
Fraunhofer ISE, Germany

2BO.1.1 Optimization of Rear Al Fire-Through Contacts for Bifacial p-Type PERC with AlOx/SiNx Rear Passivation
D. Ourinson, T. Javaid, T. Fellmeth, M. Pospischil,
G. Emanuel, F. Clement & S.W. Glunz
Fraunhofer ISE, Freiburg, Germany
M. Dhamrin
Toyo Aluminium, Shiga, Japan

2BO.1.2 Deep Level Transient Spectroscopic Investigation of Carrier Trap Defects in p-Type mc-Si PERC Solar Cells After Elevated Temperature Light Soaking
C. Zhou, S. Zhou, F. Ji & W.J. Wang
CAS, Beijing, China

2BO.1.3 Impact of POCl3 Diffusion Process Parameters on Oxygen Precipitates and Impurity Gettering in Crystalline Silicon
S. Maus, S. Lohmüller, J. Schön & A. Wolf
Fraunhofer ISE, Freiburg, Germany

2BO.1.4 Towards 23% Screen-Printed Rear-Emitter Bifacial n-PERT Cells
P. Choulat, S. Singh, L. Tous, F. Duerinckx, I. Gordon &
J. Szuflcik
imec, Leuven, Belgium
J. Chen & Z. Liu
Jolywood, Taizhou, China

2BO.1.5 APCVD Based Stacked Co-Diffusion for Multicrystalline Silicon p-PERT Solar Cells
F. Koschnick, J. Fichtner, A. Zuschlag & G. Hahn
University of Konstanz, Germany
H. Zunft
Gebr. Schmid, Freudenstadt, Germany

2BO.1.6 Undoped LPCVD PolySi Passivating Layer to Reduce Recombination Loss for Screen-Printed Contacts on Top of an Uniform Shallow Boron Emitter
X. Lu, M.K. Stodolny & J. Löfler
ECN part of TNO, Petten, The Netherlands
B.W.H. van de Loo & P.R. Venema
Tempress, Vaassen, The Netherlands
ORAL PRESENTATIONS 5BO.5

08:30 - 10:00  Performance of PV Systems

Chairpersons:
Gerhard Mütter
Alteso, Austria
Christian Thiel
European Commission JRC, Italy

5BO.5.1  International Collaboration Framework for the Calculation of Performance Loss Rates: Data Quality, Benchmarks, and Trends
D. Moser & S. Lindig
Eurac Research, Bolzano, Italy
D. Bertani
RSE, Milan, Italy
A.J. Curran & R.H. French
Case Western Reserve University, Cleveland, United States
M. Herz
TÜV Rheinland Energy, Cologne, Germany
G. Makrides
University of Cyprus, Nicosia, Cyprus
B. Müller
Fraunhofer ISE, Freiburg, Germany
M. Richter
3E, Brussels, Belgium
M. Van Iseghem
EDF R&D, Moret-sur-Loing, France
W.G.J. H.M. van Sark
Utrecht University, The Netherlands
J.S. Stein
Sandia National Laboratories, Albuquerque, United States

5BO.5.2  Performance Analysis of Mechanistic and Machine Learning Models for Photovoltaic Energy Yield Prediction
A. Livera, M. Theristis, G. Makrides & G.E. Georghiou
University of Cyprus, Nicosia, Cyprus
J. Sutterlueti
Gantner Instruments, Schruns, Austria
S. Ransome
Steve Ransome Consulting, Kingston upon Thames, United Kingdom

5BO.5.3  PV O&M Optimization by AI Practice
M.Y. Chang, K.H. Chen, T.P. Hsu, K. Wei & K. Chuang
Sinogreenenergy, Taipei, Taiwan
C.-C. Hsu
YunTech, Douliou, Taiwan

5BO.5.4  General, Robust and Scalable Methods for String Level Monitoring in Utility Scale PV Systems
A. Skomdal, M.B. Øgaard, J.H. Selj, H. Haug & E.S. Marstein
Institute for Energy Technology, Kjeller, Norway

5BO.5.5  Automated Performance Monitoring of Multiple Rooftop Systems Using a Single Machine Learning Algorithm
K. Shetty, Y. Kaushal, R. Dhavan & V. Murthy
 Tata Power Solar Systems, Bangalore, India

5BO.5.6  Review of PV Array Interconnection Schemes for Maximum Power Operation under Partial Shading
M. Etarhouni, B. Chong & L. Zhang
The University of Leeds, United Kingdom

ORAL PRESENTATIONS 1BO.9

08:30 - 10:00  Novel Concepts for PV Modules

Chairpersons:
Francesco Roca
ENEA, Italy
Richard King
Arizona State University, United States

1BO.9.1  Preparation of 8.5% Sub-Module out of 5% Dye Sensitized Solar Cells by Omnidirectional Light Trapping and 3D Cell Array
Y.H.C. Sim
University of Science and Technology, Daejeon, Republic of Korea
M.J. Yun, S.I. Cha & D.Y. Lee
KERI, Changwon, Republic of Korea

1BO.9.2  Student Award Finalist Presentation: Wearable and Washable Photovoltaic Fabrics
A. Satharasinghe, T. Hughes-Riley & T. Dias
Nottingham Trent University, United Kingdom

1BO.9.3  Automation of Silicone Solar Module Production with Low-Cost Tape Interconnection Method
J. Buddgård, T. Lagerstedt & A. Machirant
J B EcoTech, Lidingö, Sweden

1BO.9.4  Accelerated Test Method of Environment-Induced PID for Encapsulation Materials of PV Modules
L.-C. Yu, Y.-T. Li, H.-L. Wu & H.-H. Hsieh
ITRI, Hsin-Chu, Taiwan
1BO.9.5  Lightweight PV Module Approach - Field Test Study and Yield Evaluation
S. Schindler, D. Götz & D. Daßler
Fraunhofer CSP, Halle (Saale), Germany

1BO.9.6  Modelling and Optimization of Phase Change Materials (PCM) for Photovoltaic Module Cooling
J.C. Ortiz Lizcano, C. van Nierop y Sanchez, Z. Haghighi, P. Luscuere, O. Isabella & M. Zeman
Delft University of Technology, The Netherlands

ORAL SESSION 4BO.13
08:30 - 10:00  Module Aging and Degradation
Chairpersons:
Christos Monokroussos
TÜV Rheinland, China
Stefan Winter
PTB, Germany

4BO.13.1  Photovoltaic Climate Zones: The Global Distribution of Climate Stressors Affecting Photovoltaic Degradation
T. Karin & A. Jain
Lawrence Berkeley National Laboratory, United States
C. Birk Jones
Sandia National Laboratories, Albuquerque, United States

4BO.13.2  Durable PV Modules - Requirements for the Module Design and Aspects of Reliability Testing Techniques
G. Mathiak, W. Herrmann & F. Reil
TÜV Rheinland Energy, Cologne, Germany
A. Morlier & M. Köntges
ISFH, Hamelin, Germany
S. Großer, M. Pander, S. Schindler, M. Turek & M. Ebert
Fraunhofer CSP, Halle (Saale), Germany

4BO.13.3  Error Analysis of Aged Modules with Cracked Backsheets
G.C. Eder & Y. Voronko
OFI, Vienna, Austria
W. Mühliesen & C. Hirschl
CTR, Villach, Austria
G. Oreski
PCCL, Leoben, Austria
H. Sonnleitner
ENcome Energy Performance, Klagenfurt, Austria

D.E. Mansour, L. Verissimo Mesquita, D. Philipp & L. Pitta Bauermann
Fraunhofer ISE, Freiburg, Germany
P. Christoefl
PCCL, Leoben, Austria

4BO.13.5  Weathering Stability of Alternative Polyolefin Encapsulants in Glass-Glass Modules
A. Omazic & G. Oreski
PCCL, Leoben, Austria
G.C. Eder
OFI, Vienna, Austria
L. Neumaier & C. Hirschl
CTR, Villach, Austria
M. Edler
ISOVOLTAIC Solinex, Lebring, Austria
G. Pinter
University of Leoben, Austria
M. Erceg
University of Split, Croatia

4BO.13.6  Development of Inhomogeneities in Multi-Crystalline Silicon PV Modules over Two Years of Real Operating Conditions
M. Bokalic, K. Brecl & M. Topič
University of Ljubljana, Slovenia

VISUAL PRESENTATIONS 3BV.1
08:30 - 10:00  Ci(G)S, CdTe and Related Thin Film Solar Cells / III-V and Related Compound Semiconductor Based Devices
Detailed information on this session is presented in the section entitled ‘Visual Presentations’.
TUESDAY, 10 SEPTEMBER 2019

**CONFERENCE PROGRAMME**

**PLENARY SESSION 2BP.1**

**10:30 - 12:10**  Silicon PV Highlights

Chairpersons:
- Francesca Ferrazza
  eni spa, Italy
- Giso Hahn
  University of Konstanz, Germany

2BP.1.1  Bulk Defects in Monocrystalline Silicon, Multicrystalline Silicon and Mono-Like Silicon Materials
ANU, Canberra, Australia

2BP.1.2  The Versatility of Passivating Carrier-Selective Silicon Thin Films for Diverse High-Efficiency Heterojunction-Based Solar Cells
CSEM, Neuchâtel, Switzerland

2BP.1.3  Both Sides Contacted Silicon Solar Cells: Options for Approaching 26% Efficiency
Fraunhofer ISE, Freiburg, Germany

2BP.1.4  Approaching 23 % and Mass Production of Bifacial p-Cz Q.ANTUM PERC Solar Cells
Hanwha Q CELLS, Bitterfeld-Wolfen, Germany

2BP.1.5  Development of Industrial n-Type Bifacial TOPCon Solar Cells and Modules
Jolywood, Taizhou, China

**ORAL PRESENTATIONS 2BO.2**

**13:30 - 15:00**  PolySi Passivating Contacts (I)

Chairpersons:
- Yukimi Ichikawa
  Tokyo City University, Japan
- Jean-Paul Kleider
  CNRS/GeEPs, France

2BO.2.1  Efficiency Potential of the “Both Polarities Poly-Si Front Side Structured” (Boss) Cell and Its Elegant Realization by LPCVD
ISFH, Emmerthal, Germany

2BO.2.2  Industrial Solar Cells Featuring Carrier Selective Front Contacts
J. Stuckelberger, D. Yan, P. Phang & D. Macdonald
ANU, Canberra, Australia
J. Yang, P. Zheng & X. Zhang
Jinko Solar, Haining, China

2BO.2.3  Electrical and Mechanical Characterization of Plated Ni/Cu/Ag Contacts on Polysilicon
Fraunhofer ISE, Freiburg, Germany

2BO.2.4  Integration Avenues in Solar Cells Implementing Passivating Contacts
CSEM, Neuchâtel, Switzerland
A. Ingenito & C. Ballif
EPFL, Neuchâtel, Switzerland

2BO.2.5  High Quality Passivating Contacts with Very Thin p+ or n+ Polysilicon Layers for Large-Area Crystalline Silicon Solar Cells
ECN part of TNO, Petten, The Netherlands

2BO.2.6  Screen Printed Double-Side Contacted POLO-Cels with Ultra-Thin Poly-Si Layers
ISFH, Emmerthal, Germany
T. Kluge & H. Mehlich
Meyer Burger, Hohenstein-Ernstthal, Germany
ORAL PRESENTATIONS 5BO.6

13:30 - 15:00 Imaging and Fault Detection in PV Systems

Chairpersons:
Peter Lechner
ZSW, Germany
Ulrike Jahn
TÜV Rheinland Energy, Germany

5BO.6.1 Field Experience of UVFL Inspection with Drone
J. Lin, B. Ku & S. Chen
PV Guider, Taipei, Taiwan

5BO.6.2 Photovoltaic Defect Classification through Thermal Infrared Imaging Using a Deep Learning Approach
C. W. Dunderdale, W. J. Brettenny, C. M. Clohessy & E. E. van Dyk
Nelson Mandela University, Port Elizabeth, South Africa

5BO.6.3 Quantification of Yield Losses in Large-Scale Photovoltaic Power Plants Using Infrared Thermography
A. Chaudron, Q. van Nieuwenhoven, A. Lambert & S. Scheerlinck
ENGIE Laborelec, Linkebeek, Belgium
T.-L. de Lophem & V. Punamiya
Sitemark, Leuven, Belgium

5BO.6.4 Student Award Finalist Presentation: Automatic Fault Detection of Photovoltaic Array by Convolutional Neural Networks during Aerial Infrared Thermography
A. K. Vidal de Oliveira & R. Rüther
UFSC, Florianópolis, Brazil
M. Aghaei
Albert-Ludwigs-University, Freiburg, Germany

5BO.6.5 Real-Time Fault Detection in Massive Multi-Array PV Plants Based on Machine Learning Techniques
C.-C. Hsu & J.-L. Li
YunTech, Douliou, Taiwan
Y.-S. Chen
Reforecast, Taichung, Taiwan

5BO.6.6 New Four-Stage Classification Method for Fault Detection and Diagnosis Applied to Photovoltaic Power Plants
A. Migan-Dubois & D. Diallo
GeePs, Gif-sur-Yvette, France
C. Delpha
University of Paris Sud, France

ORAL PRESENTATIONS 1BO.10

13:30 - 15:00 Novel Concepts for Materials and Solar Cells

Chairpersons:
Jozef (Jef) Poortmans
imec, Belgium
Pere Roca I Cabarrocas
CNRS, France

1BO.10.1 Direct Growth of III-V on Si for Tandem Solar Cells: Fabrication and Characterization of a GaAs Nanowire Top-Cell
R. de Lépinau, O. Lafont, B. Berenguier & L. Lombez
IPVF, Palaiseau, France
A. Scaccabarozzi, F. Oehler, H.-L. Chen, S. Collin & A. Cattoni
CNRS, Marcoussis, France

1BO.10.2 Selective Passivation and Doping at Surfaces and Grain-Boundaries of Polycrystalline Ga0.37In0.63P
A. Chikhalkar, N. M. Kumar & R. R. King
Arizona State University, Tempe, United States

1BO.10.3 High Open-Circuit Voltage CuSbS2 Solar Cells Achieved through the Formation of Epitaxial Growth of CdS/CuSbS2 Hetero-Interface by Post-Annealing Treatment
Y. Zhang, J. Huang, M. A. Green & X. Hao
UNSW Australia, Sydney, Australia

1BO.10.4 2D Transition Metal Dichalcogenide MoS2 for Fingerless Cell Application
T. Kamioka, T. Nishihara, Y. Hibino & A. Ogura
Meiji University, Kawasaki, Japan
Y. Hayashi, H. Lee, K. Nakamura & Y. Ohshita
Toyota Technological Institute, Nagoya, Japan

1BO.10.5 Naturally Formed Nanostructured Cu-In-Se Bulk Pn Homojunctions for Photovoltaic Devices
S. Menezes
InterPhases Solar, Moorpark, United States
A. Samantilleke
University of Minho, Braga, Portugal

1BO.10.6 Silicon Nanowire Based Hybrid Nanomaterials as Counter Electrodes for Dye-Sensitized Solar Cells
J. Kim, S. H. Jung, G. S. Choi, Y. B. Kim & S. M. Kim
GERI, Gumi, Republic of Korea
VISUAL PRESENTATIONS 3BV.2
13:30 - 15:00 Perovskites Based Photovoltaics / Organic and Dye-Sensitised Devices / Tandems

Detailed information on this session is presented in the section entitled ‘Visual Presentations’.

ORAL PRESENTATIONS 2BO.3
15:15 - 16:45 PolySi Passivating Contacts (II)

Chairpersons:

Arthur W. Weeber
ECN part of TNO, The Netherlands

Rasit Turan
METU, Turkey

2BO.3.1 Modelling of Passivation and Conductivity of n-Type Poly-Si Layers Adapting Machine Learning
S. Bordihn, B. Min, R. Peibst & R. Brendel
ISFH, Emmerthal, Germany

2BO.3.2 LPCVD in-Situ n-Type Doped Polysilicon Process Throughput Optimization and Implementation into an Industrial Solar Cell Process Flow
R.C.G. Naber & J.M. Luchies
Tempress, Vaassen, The Netherlands

2BO.3.3 Polysilicon Layers Doped by Plasma Immersion Ion Implantation (PIII): New Paths for Industrial Processing of Passivated Contacts Solar Cells
A. Veau, T. Desrues, C. Oliveau, A. Morisset, B. Martel & S. Dubois
CEA, Le Bourget-du-Lac, France
F. Torregrosa & L. Roux
Ion Beam Services, Peynier, France
A. Kaminski-Cachopo & Q. Rafhay
IMEP-LAHC, Grenoble, France

2BO.3.4 Inkjet-Printing of Phosphorus and Boron Dopant Sources for Tunnel Oxide Passivating Contacts
Z. Kiaee, C. Reichel, M. Nazarzadeh, R. Keding,
Fraunhofer ISE, Freiburg, Germany

2BO.3.5 SiOxNyB and SiNxP for Ex-Situ Doping of Poly-Si Passivated Contacts
R. Cabal, A. Morisset, B. Grange & S. Dubois
CEA, Le Bourget du Lac, France

2BO.3.6 The Roles of Poly-Si Layer in Poly-Si Passivating Contact Solar Cells
H. Park, S.J. Park, S.H. Bae, J.Y. Hyun, C.H. Lee, D. Choi,
D. Kang, H. Han, Y. Kang, H.-S. Lee & D.H. Kim
Korea University, Seoul, Republic of Korea

ORAL PRESENTATIONS 5BO.7
15:15 - 16:45 Soiling, Degradation and Failure Diagnosis PV Systems

Chairpersons:

Franck Al-Shakarchi
CEATECH-INES, France

Steve Ransome
Steve Ransome Consulting, United Kingdom

5BO.7.1 Soiling Reduction by Modified PV Tracker
B. Figgis
QEERI, Doha, Qatar
K. Ilse
Fraunhofer CSP, Halle (Saale), Germany

5BO.7.2 SOLEIL Inno-PV Project Outputs: PV Modules Soiling Assessment and Development of Innovative Low Cost Cleaning Solutions
A. Barhdadi, D. Dahloui, B. Laarabi, S.M. Alaoui, M. Rhourri, Y. Rouas & A. Said
Mohammed V University, Rabat, Morocco
J. Boardman, G. Dambrine & E. Menard
HeliosLite, Le Bourget-du-Lac, France

5BO.7.3 Improving Soiling Extraction: From Yearly to Monthly Soiling Rates
L. Micheli, F. Almonacid & E.F. Fernández
University of Jaén, Spain

5BO.7.4 Evaluation of Risk for Potential-Induced Degradation in Floating PV Systems
H. Liu, W. Luo, A. Kumar & T. Reindl
SERIS, Singapore, Singapore
P. Hacke
NREL, Golden, United States
5BO.7.5 Degradation in PV Power Plants: Theory and Practice
K. Kiefer, B. Farnung & B. Müller
Fraunhofer ISE, Freiburg, Germany
K. Reinartz & I. Rauschen
Pohlen Solar, Geilenkirchen, Germany

5BO.7.6 Analysis of Digitized PV-Module/System Data for Failure Diagnosis
C. Buerhop-Lutz, T. Pickel, J. Teubner & J. Hauch
HI ERN, Erlangen, Germany
C. J. Brabec
FAU, Erlangen, Germany

ORAL PRESENTATIONS 4BO.11
15:15 - 16:45 PV Module Design / Wind Load / Soiling

Chairpersons:
Ana Rosa Lagunas
CENER, Spain
Eszter (Esther) Voroshazi
imec, Belgium

4BO.11.1 Thermomechanical Evaluation of New PV Module Designs by FEM Simulations
A.J. Beinert, P. Romer, M. Heinrich, M. Mittag & H. Neuhaus
Fraunhofer ISE, Freiburg, Germany
J. Aktaa
Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany

4BO.11.2 Digital Prototyping – Application of Numerical Methods in Module Development
M. Pander, U. Zeller, B. Jaechel & M. Ebert
Fraunhofer CSP, Halle (Saale), Germany

4BO.11.3 Boosting PV Module Efficiency Beyond the Efficiency of Its Solar Cells – An Optical Simulation Study
IFFH, Emmerthal, Germany
C. Schinke
Leibniz University of Hannover, Germany

4BO.11.4 Non-Uniform Wind Loads Test for Photovoltaic Module
S.-T. Hsu, W.-Y. Lin & C.F. Hsieh
ITRI, Hsinchu, Taiwan

4BO.11.5 Student Award Finalist Presentation: Physics of Soiling and Dust Adhesion - Lessons Learnt from Laboratory Soiling Tests
K. Ilse, M.Z. Khan, V. Naumann & C. Hagendorf
Fraunhofer CSP, Halle (Saale), Germany

4BO.11.6 Test Protocol for PV Module Cleaning Equipment
N. Feretti, A. El-Issa & L. Podlowski
PI Berlin, Germany

VISUAL PRESENTATIONS 1BV.3
15:15 - 16:45 Fundamental Studies / New Materials and Concepts for Cells and Modules

Detailed information on this session is presented in the section entitled ‘Visual Presentations’.

ORAL PRESENTATIONS 2BO.4
17:00 - 18:30 Advanced Concepts for Si-based Solar Cells

Chairpersons:
Joachim John
imec, Belgium
Ronald C.G. Naber
Tempress, The Netherlands

2BO.4.1 Diffused Thin LPCVD poly-Si Emitter and Surface Field for High Efficiency c-Si Solar Cell
G. Yang, A.W. Weeber, O. Isabella & M. Zeman
Delft University of Technology, The Netherlands

2BO.4.2 Electrode Design for Wire Interconnected Back Contact Solar Cells
A. Sprüßle, J.D. Huyeng, T. Schweigstil, I. Franzetti, L.C. Rendler & F. Clement
Fraunhofer ISE, Freiburg, Germany

2BO.4.3 High-Resolution THz Imaging for Optimized polySi Patterning Process
A. Mewe, M. Stodolny, P. Manshanden, A. Gutjahr, I. Cesar & J. Löfler
ECN part of TNO, Petten, The Netherlands
2BO.4.4 Development of Very Thin Rib Structure Si Hetero-Junction Solar Cells
Y. Ichikawa, Y. Osawa, H. Noge & M. Konagai
Tokyo City University, Setagaya-ku, Japan

2BO.4.5 Tunnel Contact IBC Cells: An Industrial Process Using Shadow Masking
Meyer Burger Research, Hauterive, Switzerland

2BO.4.6 Implementation and Characterization of Tunnel-Oxide Passivating Contacts for Single Junction c-Si and Perovskite/c-Si Tandem Solar Cells
EPFL, Neuchâtel, Switzerland
C. Allebé, G. Nogay, J. J. Diaz Leon, J. Horzel, S. Nicolay & M. Despeisse
CSEM, Neuchâtel, Switzerland
S. Eswara, N. Valle & T. Wirtz
LIST, Belvaux, Luxembourg

ORAL PRESENTATIONS 3BO.8
17:00 - 18:30 III-V Cells for Space and Terrestrial Applications

Chairpersons:
Carsten Baur
European Space Agency, The Netherlands
Gianluca Timò
RSE, Italy

3BO.8.1 Bragg Reflector within Triple-Junction Solar Cells for Spectrum Splitting Applications
Y. Jiang, M.J. Keevers, N. Ekins-Daukes & M.A. Green
UNSW Australia, Sydney, Australia
P. Pearce
Imperial College London, United Kingdom
A. Berg, F. Wolf, W. Guter & M. Meusel
Azur Space, Heilbronn, Germany

3BO.8.2 Growth and Structure Optimization of 1.73eV MBE-Grown AlGaAs/InGaP Heterostructure Solar Cells
A. Ben Slimane, A. Bercegol, L. Lomme, J.-B. Puel & A. Julien
IPVF, Palaiseau, France
A. Michaud
Total New Energies, Palaiseau, France
O. Mauguin & X. Lafosse
CNRS, Paris, France
J.-F. Guillemoiles, J.-C. Harmand & S. Collin
CNRS, Palaiseau, France

3BO.8.3 Status and Recent Results from the Development of Dynamic Hydride Vapor Phase Epitaxy toward Low-Cost, High-Efficiency III-V Solar Cells
NREL, Golden, United States

3BO.8.4 MIS Structures for Solar Cells Perimeter Passivation
A. Delamarre & J.-F. Guillemoiles
CNRS, Palaiseau, France
H. Sodabanlu, K. Watanabe & M. Sugiyama
University of Tokyo, Japan

3BO.8.5 Overview of Concentrator Solar Cells and Analysis for Their Non-Radiative Recombination
M. Yamaguchi, K. Araki, K.-H. Lee & N. Kojima
Toyota Technological Institute, Nagoya, Japan

3BO.8.6 Photovoltaic Operation in the Low Atmosphere and at the Surface of Venus
J. Grandizier, P. Gogna & J.A. Cutts
NASA, Pasadena, United States
A.P. Kirk & M.L. Osowski
MicroLink Devices, Niles, United States
P. Javaletka & H.A. Atwater
Caltech, Pasadena, United States
M.A. Stevens & T.E. Vandervelde
Tufts University, Medford, United States
ORAL PRESENTATIONS 4BO.12
17:00 - 18:30  Induced Degradation

Chairpersons:
Hartmut Nussbaumer
ZHAW, Switzerland

Roland Einhaus
Apollon Solar, France

4BO.12.1 Special Introductory Presentation: Prediction of Potential Power/Yield Loss from LeTID Susceptible Modules
M. Pander, B. J. aekel, D. Däßler, U. Zeller & M. Ebert
Fraunhofer CSP, Halle (Saale), Germany

4BO.12.2 LeTID - A Comparison of Test Methods on Module Level
Fraunhofer ISE, Freiburg, Germany

4BO.12.3 Field Performance of the Industrial Si Mono-Crystalline PERC Solar Module Arrays with the Use of Advanced Hydrogenation Technologies
S. Wang & K.N. Lim
NTU Singapore, Singapore
C.M. Chong
UNSW Australia, Sydney, Australia
M. Tan
CEC Energy, Singapore, Singapore

4BO.12.4 Towards a Complete Prediction of PID in Crystalline Silicon Modules in Real Field Conditions
E. Annigoni, A. Virtuani & C. Ballif
EPFL, Neuchâtel, Switzerland

4BO.12.5 Potential-Induced Degradation of n-Type Front-Emitter Crystalline Silicon Photovoltaic Modules with Different Degradation Stages
K. Ohdaira, Y. Komatsu, T. Suzuki & S. Yamaguchi
AIST, Ishikawa, Japan
A. Masuda
AIST, Tsukuba, Japan

VISUAL PRESENTATIONS 6BV.4
17:00 - 18:30  PV on/in Buildings, Infrastructure, Landscape, Water and Nature / Professional Applications of PV

Detailed information on this session is presented in the section entitled ‘Visual Presentations’.
**ORAL PRESENTATIONS 4CO.1**

08:30 - 10:00 Imaging Techniques and Characterisation

Chairpersons:

Yoshihiro Hishikawa  
AIST, Japan

Henning Nagel  
Fraunhofer ISE, Germany

4CO.1.1 Quantitative Mapping of PV Modules Performance Using Electroluminescence-Based Imaging  
G. El Hajje, J. Dupuis, D. Binesti & P. Dupeyrat  
EDF R&D, Éculelles, France

4CO.1.2 Applying Deep Learning Algorithms to EL-Images for Predicting the Module Power  
C. Buerhop-Lutz, T. Pickel & J. Hauch  
HI ERN, Erlangen, Germany

4CO.1.3 Method for Automatic Calculation of the Exposure Time in Electroluminescence Imaging of Photovoltaic Modules  
S.V. Spataru, D. Sera & H.R. Parikh  
Aalborg University, Denmark

4CO.1.4 Application of Suns-Photoluminescence to Extract Implied I-V Curves of Individual Cells in Modules Installed in the Field  
R. Bhoopathy, O. Kunz, R. Dumbrell, T. Trupke & Z. Hameiri  
UNSW Australia, Sydney, Australia

4CO.1.5 Procedures for Angular Mismatch Correction – Development of an International Standard Proposal  
F. Plag & S. Winter  
PTB, Braunschweig, Germany

4CO.1.6 Test Method for Current-Voltage Performance Measurement and the Analysis of Hysteresis Effect of Perovskite PV Modules  
J.Q. Gao, E. Lee, C. Monokroussos & C. Zou  
TÜV Rheinland, Shanghai, China

**ORAL PRESENTATIONS 3CO.5**

08:30 - 10:00 Perovskite Based Photovoltaics (I)

Chairpersons:

Blagovest Mihaylov  
CSIRO, Australia

Christopher Case  
Oxford PV, United Kingdom

3CO.5.1 The Physics of Ion Migration in Perovskite Solar Cells: Insights into Hysteresis, Device Performance and Characterisation  
D. Lan & M.A. Green  
UNSW Australia, Sydney, Australia

3CO.5.2 Student Award Finalist Presentation: Multidimensional Luminescence Imaging of Electron/Hole Transport in Triple Cation Perovskite  
A. Bercegol, S. Cacovich & L. Lombez  
IPVF, Palaiseau, France

3CO.5.3 Textured Perovskite Single-Junction Solar Cells for Improved Optics  
P. Fiala, J. Werner, F. Fu, T.-C. Yang, M. Bräuninger, F. Sahli, R. Razaera, Q. Jeangros & C. Ballif  
EPFL, Neuchâtel, Switzerland

3CO.5.4 Pb Free and Pb Less Perovskite Solar Cells with Narrow Band Gap- Aiming at High Efficiency and All Perovskite Tandem Solar Cells  
Institute of Technology, Kitakyushu, Japan

Q. Shen  
University of Tokyo, Japan

T. Minemoto  
Ritsumeikan University, Kusatsu, Japan

K. Yoshino  
University of Miyazaki, Japan
3CO.5.5  Slot-Die Coating of Double-Cation Perovskite Solar Cells from Ink Tuning to High Efficiency Devices
M. Fievez, C. Roux, M. Manceau, F. Ardiaça, S. Cros & S. Berson
CEA, Le Bourget du Lac, France

3CO.5.6  Methylammonium-Free, High-Performance, and Stable Perovskite Solar Cells on a Planar Architecture
S.H. Turren Cruz
HZB, Berlin, Germany
A. Hagfeldt
EPFL, Lausanne, Switzerland
M. Saliba
Adolphe Merkel Institute, Fribourg, France

ORAL PRESENTATIONS 2CO.9
08:30 - 10:00  TCOs and Surface Passivation
Chairpersons:
Yoshio Ohshita
Toyota Technological Institute, Japan
Stefan W. Glunz
Fraunhofer ISE, Germany

2CO.9.1  Student Award Finalist Presentation: Fired Hydrogenated AZO Layers: A New Passivation Approach for High Temperature Passivated Contact Solar Cells
E. Bruhat, T. Desrues, B. Martel, R. Cabal & S. Dubois
CEA, Le Bourget du Lac, France
D. Blanc-Péllissier
INSA Lyon, France

2CO.9.2  Phosphorus Oxide / Aluminum Oxide Stacks: A Highly Promising Passivation Scheme for n-Type Si Regions in Solar Cells
Eindhoven University of Technology, The Netherlands
E. Hoek & P.C.P. Bronsveld
ECN part of TNO, Petten, The Netherlands

2CO.9.3  Field-Effect Passivation Enhancement by Introducing Nanopyramid Gratings for Light Management in Heterojunction Silicon Solar Cells
A. Razzaq, V. Depauw, J. John, I. Gordon, J. Szlufcik & J. Poortmans
imec, Leuven, Belgium

2CO.9.4  Impact of TCO Sputtering Parameters on Silicon Heterojunction Solar Cell Passivation Properties
A. Cruz, A.B. Morales-Vilches, E.C. Wang, S. Neubert, R. Schlatmann & B. Stannowski
HZB, Berlin, Germany
B. Szyszka
Berlin University of Technology, Germany

2CO.9.5  Bringing Tungsten-Doped Indium Oxide to Manufacturing Maturity for High Efficiency Silicon Heterojunction Solar Cells
J.-F. Lerat, M. Tomassini, V. Barth & D. Muñoz
CEA, Le Bourget du Lac, France
G. Christmann, L. Ding, J.J. Diaz Leon & S. Nicolay
CSEM, Neuchâtel, Switzerland

2CO.9.6  Improving Organic-Silicon Heterojunction Solar Cells through the Admixture of Sorbitol to PEDOT:PSS
M.-U. Halbich & J. Schmidt
ISFH, Emmerthal, Germany
R. Sauer-Stieglitz & W. Lövenich
Heraeus, Leverkusen, Germany

ORAL PRESENTATIONS 5CO.13
08:30 - 10:00  Microgrids, Grid Integration and Simulation of PV Systems
Chairpersons:
Mauricio Richter
3E, Belgium
Dirk Stellbogen
ZSW, Germany

5CO.13.1  Full-Scale Simulation and Experimentation Platforms for PV-Diesel Microgrid Control and Design: From Design to Stability Studies
T.-P. Do, X. Le Pivert & F. Bourry
CEA, Le Bourget-du-Lac, France
J. Colas
Cap Vert Energie, Marseille, France

5CO.13.2  Sizing of a PV/Battery System through Stochastic Control and Plant Aggregation
T. Carrière, F.-P. Neirac & G. Kariniotakis
Mines ParisTech, Sophia-Antipolis, France
C. Vernay & S. Pitaval
SOLAIIS, Sophia-Antipolis, France
Conference Programme
WEDNESDAY, 11 SEPTEMBER 2019

5CO.13.3  Ramp Rate Control for PV Plant Integration: Experience from Karratha Airport’s PV Farm
G. Dickeson, L. McLeod, L. Frearson & B. Hertelee
Ekistica, Alice Springs, Australia
A. Dobb
ARENA, Canberra, Australia

5CO.13.4  Testing of Microgrid Control Systems According to IEEE 2030.8 – Experiences and Learnings from Laboratory Tests
C. Messner, C. Seidl & T.I. Strasser
AIT, Vienna, Austria
J. Jimeno, A. Perez-Basante, J. Merino & E. Rodríguez
Tecnalia, San Sebastián, Spain
J. Hashimoto
AIST, Tsukuba, Japan

5CO.13.5  Photovoltaic (PV) Winter Electricity in the Swiss Energy Strategy 2050
U. Muntwyler, T. Schott & E. Schüpbach
BUAS, Burgdorf, Switzerland

5CO.13.6  Cross-Validation of PV System Simulation Software
A. Driesse & N. Patel
PV Performance Labs, Freiburg, Germany

VISUAL PRESENTATIONS 6CV.1
08:30 - 10:00  PV Driven Energy Management and System Integration

Detailed information on this session is presented in the section entitled ‘Visual Presentations’.

PLENARY SESSION 3CP.1
10:30 - 12:00  Perovskite, Organic, CIGS and III-V Multi-Junction Devices

Chairpersons:
Ayodhya Nath Tiwari
EMPA, Switzerland
Christophe Ballif
EPFL, Switzerland

3CP.1.1  Keynote Presentation: Research and Innovation in CIGS and its Alloys - Which are the Next Bottlenecks?
M. Edoff
Uppsala University, Sweden

3CP.1.2  Towards Highly Efficient Monolithic Tandem Devices with Perovskite Top Cells
M. Jost, E. Köhnen, A. Al-Ahouri, L. Korte, B. Stannowski & S. Albrecht
HZB, Berlin, Germany

3CP.1.3  Recent Progress of Solar Cell Development for CPV Applications at AZUR SPACE
R. van Leest, D. Fuhrmann, A. Frey & M. Meusel
Azur Space, Heilbronn, Germany
G. Siefer & S.K. Reichmuth
Fraunhofer ISE, Freiburg, Germany

3CP.1.4  Power Performance and Thermal Operation of Organic Photovoltaic Modules in Real Operating Conditions: Performance of Emerging PV Materials
G. Bardizza, E. Salis & E.D. Dunlop
European Commission JRC, Ispra, Italy
C.A. Toledo Arias
UPCT, Cartagena, Spain

VISUAL PRESENTATIONS 2CV.2
12:45 - 15:00  Feedstock, Crystallisation, Wafering, Defect Engineering / Thin Film and Foil-Based Si Solar Cells
/ Characterisation & Simulation of Si Cells

Detailed information on this session is presented in the section entitled ‘Visual Presentations’.
ORAL PRESENTATIONS 4CO.2
13:30 - 15:00 Outdoor Performance

Chairpersons:
Werner Herrmann
TÜV Rheinland Energy, Germany
Tom Betts
Loughborough University, United Kingdom

4CO.2.1 Performance Assessment of Various PV Module Types under Desert Conditions through Device Simulations and Outdoor Measurements
T. Katsaounis & A. Tzavaras
KAUST, Thuwal, Saudi Arabia
K. Kotsovos, I. Gereie, A. Basaheeh, M. Abdullah,
A. Khaiyat, E. Al Habshi & A. Al Saggaf
Saudi ARAMCO, Thuwal, Saudi Arabia

4CO.2.2 Outdoor Performance Quantification and Understanding of Various PV Technologies using the IEC 61853 Matrix
R.M.E. Valckenborg
SEAC, Eindhoven, The Netherlands
B.B. Van Aken
ECN part of TNO, Petten, The Netherlands

4CO.2.3 Improving the Yield by Designing the Module for a Climatic Region
S. Ramesh, G.J.M. Janssen & B.B. Van Aken
ECN part of TNO, Petten, The Netherlands

4CO.2.4 Thermal Modelling of Photovoltaic Modules in Operation and Production
M. Mittag, L. Vogt, C. Herzog & H. Neuhaus
Fraunhofer ISE, Freiburg, Germany

4CO.2.5 Energy Yield of Coloured PV Modules in the Field
G. Friesen & R.R. Molinero
SUPSI, Canobbio, Switzerland

4CO.2.6 Assessment of the Rear Irradiance on Bifacial Silicon PV Modules
European Commission JRC, Ispra, Italy

ORAL PRESENTATIONS 3CO.6
13:30 - 15:00 Perovskite Based Photovoltaics (II)

Chairpersons:
Giorgio Bardizza
European Commission JRC, Italy
Wolfgang Tress
EPFL, Switzerland

3CO.6.1 Perovskite Meta-Stability Effects in Hysteresis-Free Measurements
B. Mihaylov, B.C. Duck, K.F. Anderson, T.W. J ones,
J. Wang, N.W. Duffy, C.J. Fell & G.J. Wilson
CSIRO, Mayfield West, Australia

3CO.6.2 Energy Rating for Evaluating Performance of Perovskite and Perovskite-on-Silicon Tandem Devices in Real-World Conditions
J.C. Blakesley & G. Koutsourakis
NPL, Teddington, United Kingdom

3CO.6.3 In Situ Metrology for Degradation Studies of Perovskite Solar Cells
G. Koutsourakis, S. Wood, Y. Cao, J.C. Blakesley, S. Ravi &
F. Araujo de Castro
NPL, Teddington, United Kingdom
K.D.G. Imalka Jayawardena, I.R.M. Bandara & P. Silva
University of Surrey, Guildford, United Kingdom

3CO.6.4 Processing of Large Area Perovskite-Based Solar Devices: High Efficiency and Stability Assessment
M. Manceau, C. Roux, N. Nguyen, F. Ardiaca, S. Cros,
M. Matheron, N. Lemaître & S. Berson
CEA, Le Bourget du Lac, France

3CO.6.5 Enhancing Performance of CH3NH3PbI3 Perovskite Solar Cell with Low-Pressure Control via Sandwich Evaporation Technique
C.-H. Kuan, P.-T. Kuo, H.-C. Hsu, W.C. Chang & C.-F. Lin
NTU, Taipei, Taiwan

3CO.6.6 Efficient Stable Semi-Transparent p-i-n Perovskite Solar Cells and Module via Up-Scalable Deposition Methods
F. Di Giacomo, V. Zardetto, D. Zhang, H. Fledderus,
I. Dogan, W. Verhees, M. Najafi, H. Lfka, Y. Galagan,
P. Poord, S.C. Veenstra & R. Andriessen
TNO, Eindhoven, The Netherlands
C. Burgess & M. Creatore
Eindhoven University of Technology, The Netherlands
T. Aernouts
imec, Genk, Belgium
ORAL PRESENTATIONS 2CO.10

13:30 - 15:00 Heterojunction Solar Cells (I)

Chairpersons:

Delfina Muñoz
CEA, France

Barbara Terheiden
University of Konstanz, Germany


K. Ding, A. Gad, M. Pomaska & S. Haas
Forschungszentrum Jülich, Germany

B. Paviet-Salomon, L.-L. Senaud, N. Badel, A. Faes,
J. Champliaud & M. Despeisse
CSEM, Neuchâtel, Switzerland

E. Voroshazi, T. Borgers,
H. Sivaramakrishnan Radhakrishna & I. Gordon
imec, Leuven, Belgium

L. Korte & B. Stannowski
HZB, Berlin, Germany

A. Tomasi, A.N. Fioretti, M. Boccard & C. Ballif
EPFL, Neuchâtel, Switzerland

J. Bartsch & M. Glatthaar
Fraunhofer ISE, Freiburg, Germany

P.A. Procel Moya, O. Isabella & M. Zeman
Delft University of Technology, The Netherlands

R. Vasudevan, S. Harrison & D. Muñoz
CEA, Le Bourget du Lac, France

A. Fejfar & M. Ledinsky
FZU, Prague, Czech Republic

D. Lachenal & B. Strahm
Meyer Burger Research, Neuchâtel, Switzerland

A. Canino & D. Proietti
ENEL Green Power, Catania, Italy

I.J. Bennett & J. Gaury
DSM Innovation, Urmond, The Netherlands

S. Senkader
Norwegian Crystals, Oslo, Norway

F. Versluis, I. Claassen & A. Molinari
Uniresearch, Delft, The Netherlands

2CO.10.2 Student Award Finalist Presentation: Bottom-Up vs Top-Down Approaches for Identifying and Mitigating the Transport Losses in High-Efficiency Silicon Heterojunction Solar Cells

L.-L. Senaud, A. Descoeudres, G. Christmann,
J. Geissbühler, N. Badel, P. Wyss, J.-W. Schütttauf,
C. Allebé, S. Nicolay, M. Despeisse,
C. Ballif & B. Paviet-Salomon
CSEM, Neuchâtel, Switzerland

2CO.10.3 Passivation vs. Microstructural Properties of Dual Intrinsic a-Si:H Layers for SHJ

J. Temmler, L. Bodlak, A. Moldovan & J. Rentsch
Fraunhofer ISE, Freiburg, Germany

2CO.10.4 Exploring Solar Cell Efficiency Limits Using Thin CZ-Quality Substrates

A. Augusto, P. Balaji, J. Karas, W.J. Dauksher &
S.G. Bowden
Arizona State University, Tempe, United States

2CO.10.5 Impact of Wafer Thickness on Temperature Coefficients in Silicon Heterojunction Solar Cells

H. Sai, T. Oku, Y. Sato, M. Tanabe & T. Matsui
AIST, Tsukuba, Japan

2CO.10.6 Bifaciality Optimization of Silicon Heterojunction Solar Cells

A. Danel, J. Eymard, F. Pernoud, J. Diaz, M. Debourdeau,
A. Bettinelli, L. Basset, S. Harrison, R. Varache,
E. Gerritsen, P.-J. Ribeyron & C. Roux
CEA, Le Bourget du Lac, France

ORAL PRESENTATIONS 5CO.14

13:30 - 15:00 Storage

Chairpersons:

Pascal Lalanne
HydroClapeyron, France

Francesco Dolci
European Commission JRC, The Netherlands

5CO.14.1 Short Term Power Fluctuation Smoothing with a Flywheel Energy Storage System

E. Toutain & J. Callec
EDF R&D, Moret-sur-Loing, France
5CO.14.2 Experience on MW-Sized Hybrid PV, Battery Storage and Genset System; Case Study of St. Eustatius Island
E. Garralaga Rojas, H. Sadri & W. Krueger
SMA Sunbelt Energy, Niestetal, Germany

5CO.14.3 Demonstration of a Novel HBr-Flow Battery for Grid Integration of PV
J. Kester
ECN part of TNO, Petten, The Netherlands
J. Lauret
ELESTOR, Arnhem, The Netherlands
R. van de Kar
Gemeente Noordoostpolder, Emmeloord, The Netherlands
S. Tuinstra
Bij ZON, Spanbroek, The Netherlands
P. Puttkammer
Witteveen+Bos, Deventer, The Netherlands

5CO.14.4 Sizing of Grid-Connected PV-Battery Systems: Technical and Economical Simulator
J.C. Solano
Universidad Nacional de Loja, Ecuador
E. Caamaño-Martín & L. Olivieri
UPM, Madrid, Spain
M.C. Brito
University of Lisbon, Portugal

5CO.14.5 Data-Driven Approach for SOH Estimation and Alarms Generation for Complex On-Grid Energy Storage Systems
F. Karoui, D.-L. Ha & T. Delaplagne
CEA, Le Bourget du Lac, France
M.-F. Bouaziz
Sogeti High-Tech, Montbonnot Saint-Martin, France

5CO.14.6 Everflow® Redox Flow Batteries: Technology Status and Field Experience
M. Schöneber
Schmid-Group, Freudenstadt, Germany

ORAL PRESENTATIONS 4CO.3
15:15 - 16:45 Interconnects and Soldering

Chairpersons:
Tony Sample
European Commission JRC, Italy
Mike Van Iseghem
EDF R&D, France

4CO.3.1 Electrically Optimized Module Concepts to Compensate Transient Shading Situations by Means of Passive Elements
H. Hanifi, C. Reyhe & B. J aeckel
Fraunhofer CSP, Halle (Saale), Germany
J. Schneider
Fraunhofer IMWS, Halle (Saale), Germany

4CO.3.2 High Efficiency Module Using Improved Anti-Reflective Coating and Based on Multi-Wire Interconnection of Back-Contacted Silicon Heterojunction Solar Cells
CSEM, Neuchâtel, Switzerland
D. Lachenal, P. Papet & B. Strahm
Meyer Burger Research, Haurteive, Switzerland
N.E. Voicu & I.J. Bennett
DSM Innovation, Geleen, The Netherlands
B. Bonnet-Eymard & R. Grischke
Meyer Burger, Gwatt, Switzerland

4CO.3.3 Industrialization of the Ribbon Interconnection of Silicon Heterojunction Solar Cells with Electrically Conductive Adhesives
Fraunhofer ISE, Freiburg, Germany
T. Fischer, R. Lorenz & D. Breitenbücher
teamtechnik, Freiberg, Germany

4CO.3.4 Effect of Solder Configurations on Finger Breakages in Photovoltaic Modules under Thermal Cycling Conditions
S. Kumar, S. Roy & R. Gupta
IIT Bombay, Mumbai, India

4CO.3.5 Quantitative Evaluation of Soldering Contacts during Thermal Cycling Magnetic Field Imaging (MFI)
M. Patzold, K. Kaufmann, C.-M. Lin, M. Rudolph & D. Lausch
DENKweit, Halle (Saale), Germany
4CO.3.6 Module Integration of SHJ Cells by Soldering  
B. Commault, P. Lefillastre, S. Bernardis, A. Bettinelli,  
J. Diaz, M. Debourdeau & F. Pernoud  
CEA, Le Bourget du Lac, France

**ORAL PRESENTATIONS 3CO.7**  
15:15 - 16:45 Organic and Dye-Sensitised Devices / Optimization of Perovskite Silicon Tandems

**Chairpersons:**

- Sjoerd Veenstra  
  ECN part of TNO, The Netherlands  
- Hubert Hauser  
  Fraunhofer ISE, Germany

3CO.7.1 Tailoring Indium-Free Electrodes for Increased Intrinsic Absorption in the Active Layer of Organic Solar Cells  
M.A. Cherif, D. Barakel & P. Torchio  
Aix Marseille University, France  
S. Touihri  
ENSIT, Tunis, Tunisia

3CO.7.2 Applying Lessons from Leaf Anatomy and Array Structure to the Development of Solar Cells Exhibiting Enhanced Electricity Production  
M.J. Yun, Y.H. Sim, S.I. Cha & D.Y. Lee  
KERI, Changwon, Republic of Korea

3CO.7.3 Development of Flexible CIGS and Flexible Perovskite-CIGS 4-Terminal Tandem  
M. Simor, V. Zardetto, M. Najafi, M. van der Vleuten,  
S. Veenstra & H. Linden  
TNO, Eindhoven, The Netherlands  
T. Aernouts  
imec, Genk, Belgium

3CO.7.4 Energy Yield Modelling of Perovskite-Based Tandem Photovoltaics  
M. Langenhorst, R. Schmager, U.W. Paetzold, J. Lehr,  
U. Lemmer & B.S. Richards  
Karlsruhe Institute of Technology,  
Eggenstein-Leopoldshafen, Germany

3CO.7.5 Design Rules to Fully Benefit from Bifaciality in Two-Terminal Tandem Solar Cells  
O. Dupré, A. Tuomiranta, Q. J. Léonard, M. Boccadal & C. Ballif  
EPFL, Neuchâtel, Switzerland  
P.-J. Alet  
CSEM, Neuchâtel, Switzerland

3CO.7.6 Optical Assessment of Perovskite-Enhanced Bifacial Silicon Solar Modules  
K. Jäger, P. Tillmann, L. Korte, E. Unger & C. Becker  
HZB, Berlin, Germany  
A. Tejada  
PUCP, Lima, Peru  
A. Karsenti & L. Kreinin  
SolAround, Jerusalem, Israel  
I. Visoly-Fisher & E.A. Katz  
BGU, Beer-Sheva, Israel

**ORAL PRESENTATIONS 2CO.11**  
15:15 - 16:45 Heterojunction Solar Cells (II)

**Chairpersons:**

- Jan Schmidt  
  ISFH, Germany  
- Matthieu Despeisse  
  CSEM, Switzerland

2CO.11.1 Design and Characterization of High-Efficiency Silicon Heterojunction Solar Cells  
J. Dréon, M. Boccadal, L. Antognini, J. Cattin, O. Dupré,  
A.N. Fioretto, J. Haschke, V. Paratte, S. Zhong & C. Ballif  
EPFL, Neuchâtel, Switzerland

2CO.11.2 Challenges and Performances in SHJ Solar Cell Area Upscaling: Effects of Cell Active Area vs. Aperture Area on IV Parameters and Understanding Edge Losses  
S. Janke, E.C. Wang, A.B. Morales-Vilches, T. Henschel,  
A. Cruz, R. Schlattmann & B. Stannowski  
HZB, Berlin, Germany

2CO.11.3 Developing Low-Cost p-Type Homo-Heterojunction Solar Cells  
D. Chen, A.H. Soeriyadi, M. Kim, M. Wright,  
B. Vicari Stefani & B. Hallam  
UNSW Australia, Sydney, Australia  
J. Shi, W. Weigand & Z.C. Holman  
Arizona State University, Tempe, United States
2CO.11.4 Interconnection of Silicon Heterojunction Solar Cells by Infrared Soldering - Solder Joint Analysis and Temperature Study
- Fraunhofer ISE, Freiburg, Germany
- M. Nowottnick
- University of Rostock, Germany

2CO.11.5 Development and Manufacturing of Silicon Heterojunction Solar Cells
- J. Wang & H. Yan
- Beijing University of Technology, China
- Hanergy Thin Film Power, Chengdu, China

2CO.11.6 The Race for High Efficiency in Production: Why Heterojunction in Now Ready for Market
- D. Muñoz & C. Roux
- CEA, Grenoble, France

ORAL PRESENTATIONS 6CO.15

15:15 - 16:45 Smart PV and Prosumers

Chairpersons:
- Ingrid Weiss
  WIP Renewable Energies, Germany
- Bruno Gaiddon
  HESPUL, France

6CO.15.1 An Online Multi-Scale Optimization Framework for Smart PV Systems
- D. Watari, I. Taniguchi & T. Onoye
  University of Osaka, Suita, Japan
- P. Manganiello, H. Goverde & F. Catthoor
  imec, Heverlee, Belgium

6CO.15.2 Washing with the Sun; Two Residential Smart Grid Pilots in The Netherlands
- C. Gerçek & A. Reinders
  University of Twente, Enschede, The Netherlands

6CO.15.3 Impact of Behavior on Using Photovoltaics to Charge Electric Vehicles: Systematic Analysis
- N. Pfugradt & U. Muntwyler
  BUAS, Burgdorf, Switzerland

6CO.15.4 From Solitary Pro-Sumers to Energy Community: Quantitative Assessment of the Benefits of Sharing Electricity
- M. Lovati, J. Adami, M. Dallapiccola, L. Maturi & D. Moser
  Eurac Research, Bolzano, Italy

6CO.15.5 Self-Consumption Rate Achieved by the Bifacial East-West Vertical PV System Compared to the Conventional South Facing System in Nordic Conditions
- S. Ranta, H. Huerta & A. Heinonen
  TUAS, Turku, Finland
- J.S. Stein
  Sandia National Laboratories, Albuquerque, United States
- E. Whitney
  UAF, Fairbanks, United States

6CO.15.6 Long Term EV Parking Spaces for Behind-the-Meter Storage of Solar Energy - A Simulation Study
- R. Ghotge & A.J. M. van Wijk
  Delft University of Technology, The Netherlands

VISUAL PRESENTATIONS 5CV.3

15:15 - 16:45 Solar Resource and Forecasting / Design and Installation of PV Systems / Storage / Concentrators and PV for Space Applications

Detailed information on this session is presented in the section entitled ‘Visual Presentations’.

NOTES

............................................................

............................................................

............................................................

............................................................

............................................................
ORAL PRESENTATIONS 4CO.4

17:00 - 18:30 Module Materials

Chairpersons:
- Gernot Oreski
  PCCL, Austria
- William J. Gambogi
  DuPont, United States

4CO.4.1 Special Introductory Presentation: Analysis of Fielded PV-Modules with Backsheet Issues
P. Lechner, H. Wirth, J. Schnepf, S. Hummel & D. Geyer
ZSW, Stuttgart, Germany
B. Weinreich & R. Haas
HaWe Engineering, Gauting-Hausen, Germany

4CO.4.2 Dual Sorption Modelling of Water Ingress in PV Encapsulants Using a Heterogeneous Mesh in Finite Element Simulations
S. Mitterhofer, M. Jankovec & M. Topič
University of Ljubljana, Slovenia
C. Barretta, L.F. Castillon Gandara & G. Oreski
PCCL, Leoben, Austria
D. Moser
Eurac Research, Bolzano, Italy

4CO.4.3 Post-Processing Thickness Variation of PV Module Materials and its Impact on Temperature, Mechanical Stress and Power
A. Pfreundt, D. Yucebas, A.J. Beinert, P. Romer & M. Mittag
Fraunhofer ISE, Freiburg, Germany

4CO.4.4 Double Layer Encapsulation Film for PV Modules Operating at High Voltage
S.C. Pop
SCP SYS, San Francisco, United States
J. Kapur
DuPont, Wilmington, United States
P. Hacke & M. Kempe
NREL, Golden, United States
R.N. Schulze
Sunrun, San Francisco, United States
X. Wang
Yingli Green Energy, Philadelphia, United States

4CO.4.5 Incidence Angle Modifier Evaluation for DSM Coating Technologies
P. Pasmans & P. Tummers
DSM Materials Science, Geleen, The Netherlands
N. Voicu
DSM Advanced Solar, Geleen, The Netherlands
A. Faes, J. Levrat, J. Champliaud & M. Despeisse
CSEM, Neuchâtel, Switzerland
M. Caccivio
SUPSI, Canobbio, Switzerland
B. Custodio
Enertis Solar, San Francisco, United States
F. Dross
DSM Innovation, Parsippany, United States

ORAL PRESENTATIONS 3CO.8

17:00 - 18:30 Perovskite Silicon Tandem Devices

Chairpersons:
- Steve Albrecht
  HZB, Germany
- Shuzi Hayase
  Institute of Technology, Japan

3CO.8.1 High-Efficiency Monolithic Perovskite/Silicon Tandem Solar Cells
F. Sahli, J. Werner, F. Fu, V. Paratte, R. Monnard, P. Fiala,
T.-C. Yang, M. Bräuninger, R.A.Z. Razera, M. Boccard,
A. Ingenib, Q. J engras & C. Ballif
EPFL, Neuchâtel, Switzerland
G. Nogay, A. Walter, S. Rafizadeh, B.A. Kamino,
M. Despeisse & S. Nicolay
CSEM, Neuchâtel, Switzerland

3CO.8.2 Unravelling Degradation of Perovskite Solar Cells and Long-Term Impact on Pervoskite/Silicon Tandem Modules
M. Ernst, J. Qian, N. Wu & A. Blakers
ANU, Canberra, Australia

3CO.8.3 Student Award Finalist Presentation: Capacitance-Voltage Characterization Technique Adapted to Tandem Solar Cells
C. Leon, S. Le Gall, M.E. Gueunier-Farret,
A. Brezard-Oudot, A. Jaffré, C. Longeaud & J.-P. Kleider
GeePs, Gif-sur-Yvette, France
L. Vauche, K. Medjoubi & E. Vebner Vidal
Université Grenoble Alpes, France
3CO.4  Perovskite Silicon Photovoltaics: The Joule in the Crown of Low-Cost Electricity
C. Case
Oxford PV, United Kingdom

3CO.5  Four-Terminal Bifacial Tandem with 30% Equivalent Efficiency
G. Coletti, L.A.G. Okel, M.J.H. Kloos, S.L. Luxembourg,
Y. Wu, J.M. Kroon, F.J.K. Danzl & L.J. Geerligs
ECN part of TNO, Petten, The Netherlands
F. Di Giacomo, M. Najafi, D. Zhang,
R.A.J.M. Andriessen & S.C. Veenstra
ECN part of TNO, Eindhoven, The Netherlands
T. Aerblts
imec, Genk, Belgium
J. Hüpkes
Forschungszentrum Jülich, Germany
C. Burgess & M. Creature
Eindhoven University of Technology, The Netherlands

3CO.6  Scale-Up Technologies towards Large Area 2-Terminal Perovskite-Silicon Tandems
B.A. Camino, A. Paracchino, S.-J. Moon, A. Walter,
J.J. Diaz Leon, G. Christmann, M. Dussouillez, L. Ding,
H.-Y. Li, S. Rafizadeh, B. Paviet-Salomon, N. Badel,
A. Faes, J. Levrat, M. Despeisse, C. Ballif & S. Nicolay
CSEM, Neuchâtel, Switzerland

ORAL PRESENTATIONS 2CO.12
17:00 - 18:30 Characterisation & Simulation of Si Cells (I)

Chairpersons:
  Marko Topič
  University of Ljubljana, Slovenia

Karsten Bothe
ISFH, Germany

2CO.12.1  Accurate Measurement of Bifacial Solar Cells with Single- and Both-Sided Illumination
M. Rauer, F. Guo & J. Hohl-Ebinger
Fraunhofer ISE, Freiburg, Germany

2CO.12.2  Localized Blistering Defects as Root Cause of Potential Induced Degradation (PID) at the Rear Side of Bifacial PERC Solar Cells
K. Sporleder, J. Bauer, M. Turek, V. Naumann &
C. Hagendorf
Fraunhofer CSP, Halle (Saale), Germany

2CO.12.3  Optimising Fill Factor for Bifacial Energy Yield and LCoE
B.B. Van Aken, S. Ramesh, L.A.G. Okel, K.J.J. Tool,
J. Löfler, A.W. Weeber & G.J.M. Janssen
ECN part of TNO, Petten, The Netherlands

2CO.12.4  Advanced Suns-Photoluminescence Technique for the Optimization of Crystalline Silicon Solar Cells
J.P. Seif, A.H.T. Le, R. Dumbrell & Z. Hameiri
UNSW Australia, Sydney, Australia
T.G. Allen
KAUST, Thuwal, Saudi Arabia
C. Samundsett
ANU, Canberra, Australia

2CO.12.5  Upgrade PERC with TOPCon: Efficiency Potential by Taking into Account the Electrical Gains and Optical Losses
C. Messmer
University of Freiburg, Germany
F. Feldmann, A. Fell, J. Schön & M. Hermle
Fraunhofer ISE, Freiburg, Germany

2CO.12.6  On the Correlation between Contact Resistivity and High Efficiency (IBC-) SHJ Solar Cells
P. Procel Moya, H. Xu, O. Isabella & M. Zeman
Delft University of Technology, The Netherlands
L.-L. Senaud, B. Paviet-Salomon & M. Despeisse
CSEM, Neuchâtel, Switzerland
H. Sivaramakrishnan Radhakrishna, M. Filipic, M. Xu &
I. Gordon
imec, Leuven, Belgium
M. Boccard, A. Fioretti, R. Monnard & C. Ballif
EPFL, Neuchâtel, Switzerland
J.-C. Stang, P. Wagner, D. Meza & L. Korte
HZB, Berlin, Germany
D. Lachenal & B. Strahm
Meyer Burger Research, Hauertive, Switzerland
W. Duan, A. Lambertz & K. Ding
Forschungszentrum Jülich, Germany
A. Felfar
Czech Academy of Sciences, Prague, Czech Republic
**ORAL PRESENTATIONS 6CO.16**

**17:00 - 18:30**  
**PV Systems Optimization**

Chairpersons:
- Franz P. Baumgartner  
  ZHAW, Switzerland  
- Bert Herteleer  
  KU Leuven, Belgium

**6CO.16.1**  

N. Maitanova, J.-S. Telle, B. Hanke, T. Schmidt  
K. von Maydell & C. Agert  
DLR, Oldenburg, Germany  
M. Grottke  
Hammer Real, Munich, Germany

**6CO.16.2**  
**From Day-Ahead PV Forecast to PV Regulation: Imbalance Mitigation Strategies for the Italian Case Study**

M. Pierro & D. Moser  
Eurac Research, Bolzano, Italy  
R. Perez  
SUNY, Albany, United States  
M. Perez  
Pace University, New York, United States  
C. Cornaro  
University of Rome, Italy

**6CO.16.3**  
**Voltage Control in Grids with High PV-Penetration**

Q.T. Tran, T. Le, F. Bourry & F. Al-Shakarchi  
CEA, Le Bourget du Lac, France

**6CO.16.4**  
**Digital System in Order to Evaluate Different Photovoltaic Energy Solutions Taking into Account the Energy Demand of the Critical Industrial Processes Involved**

A. Rubio Rico, R. Gero Ciudad & V. Fuster Roig  
ITE, Valencia, Spain

**6CO.16.5**  
**Optimal Design and Supervision of Wind-PV-Diesel Hybrid Microgrid System**

M. Boussetta, R. El Bachtiri, S. Motahhir & M. Khanfara  
EST-USMBA, Fez, Morocco  
Y. Chaib  
ENSAM, Fez, Morocco

---

**VISUAL PRESENTATIONS 5CV.4**

**17:00 - 18:30**  
**Operation, Performance and Maintenance of PV Systems**

Detailed information on this session is presented in the section entitled ‘Visual Presentations’.

---

**EU PVSEC Dinner**
THURSDAY, 12 SEPTEMBER 2019

PROGRAMME

4DP.1 (90 min plenary)
Auditorium 1
10:00

Break
10:30

5DP.2 (100 min plenary)
Auditorium 1
12:10

Lunch
12:45

2 Silicon Materials and Cells
T2.1 Feedstock, Crystallisation, Wafering, Defect Engineering
T2.2 Homojunction Solar Cells
T2.3 Heterojunction Solar Cells
T2.4 Thin Film and Foil-Based Si Solar Cells
T2.5 Characterisation & Simulation of Si Cells
T2.6 Manufacturing & Production of Si Cells

4 Photovoltaic Modules and BoS Components
T4.1 PV Module Design, Manufacture, Performance and Reliability
T4.2 Inverters and Balance of System Components
T4.3 Sustainability and Recycling

5 PV Systems and Storage – Modelling, Design, Operation and Performance
T5.1 Solar Resource and Forecasting
T5.2 Design and Installation of PV Systems
T5.3 Operation, Performance and Maintenance of PV Systems
T5.4 Storage
T5.5 Concentrators and PV for Space Applications

6 PV Applications and Integration
T6.1 PV on/in Buildings, Infrastructure, Landscape, Water and Nature
T6.2 Professional Applications of PV
T6.3 PV Driven Energy Management and System Integration

7 Finance, Markets and Policies
T7.1 Costs, Economics, Finance and Markets
T7.2 Policies and Scenarios for Renewables, Societal and Global Challenges
PLENARY SESSION 4DP.1
08:30 - 10:00 Measurement, Reliability and Sustainability

Chairpersons:
Karsten Wambach
Wambach-Consulting, Germany

Claudia Buerhop-Lutz
HIERN, Germany

4DP.1.1 Keynote Presentation: From Sunlight to Power: The History of Achieving a Globally Harmonised Approach to Photovoltaic Measurement
H. Müllejans, W. Zaaiman & E.D. Dunlop
European Commission JRC, Ispra, Italy

4DP.1.2 Keynote Presentation: An Overview of Module Reliability
M. Van Iseghem
EDF R&D, Moret-sur-Loing, France

4DP.1.3 Keynote Presentation: PV in the Circular Economy: A Research Agenda
G. Heath
NREL, Golden, United States

PLENARY SESSION 5DP.2
10:30 - 12:10 PV Systems and Storage

Chairpersons:
Heinz Ossenbrink
Band Gap, Germany

Laurent Torcheux
EDF R&D, France

5DP.2.1 Keynote Presentation: Status of Battery Energy Storage
F. Lambert
CEA, Grenoble, France

I.T. Horvath, H. Goverde, A.S.H. van der Heide & J. Govaerts
imec, Genk, Belgium
P. Manganiello, E. Voroshazi, F. Catthoor & J. Poortmans
imec, Leuven, Belgium
G.H. Yordanov & J. Moschner
KU Leuven, Belgium
I. Oroutzoglou & D. Soudris
NTUA, Athens, Greece
L.A. Radkar
University of Twente, Enschede, Belgium
N.-P. Harder
Total New Energies, San Jose, United States
T. Mueller, A. Lambert & S. Scheerlinck
ENGIE Laborelec, Linkebeek, Belgium
B. Aldalali
Kuwait University, Khaldiya, Kuwait
A.H.M.E. Reinders
University of Twente, Enschede, The Netherlands

5DP.2.3 Performance Optimization through Advanced Data Analytics - Practical Applications Covering More Than 2GWp in Europe and India
G. Mütter & B. Eizinger
Alteso, Vienna, Austria

5DP.2.4 Development and Outdoor Characterization of Hybrid Bifacial HCPV Module
J.F. Martinez Sanchez, M. Steiner, M. Wiesenfarth,
T. Fellmeth, T. Doersam, M. Wiese, S.W. Glunz & F. Dimroth
Fraunhofer ISE, Freiburg, Germany

VISUAL PRESENTATIONS 2DV.1
12:45 - 15:00 Homojunction Solar Cells / Heterojunction Solar Cells

Detailed information on this session is presented in the section entitled ‘Visual Presentations’.
**Conferece Programme**

**THURSDAY, 12 SEPTEMBER 2019**

**ORAL PRESENTATIONS 5DO.1**

**13:30 - 15:00 Solar Resource**

**Chairpersons:**
- Christos Protogeropoulos
  - EEPS, Greece
- Jan Remund
  - Meteotest, Switzerland

**5DO.1.1 Assessing Spectral Mismatch Factors from Solar Spectral Measurements under Clear and Hazy Conditions**
- G. López
  - UHU, Huelva, Spain
- C.A. Gueymard
  - Solar Consulting, Colebrook, United States
- J. Polo, N. Martín Chivelet & N. Vela
  - CIEMAT, Madrid, Spain
- J. Alonso-Montesinos, F.J. Batlles & J. Barbero
  - UAL, Almería, Spain
- A. Marzo
  - University of Antofagasta, Chile

**5DO.1.2 Constructing 1-Second Resolution Irradiance Datasets Using Clearness Index Samples**
- G. Dickeson, L. McLeod, B. Herteleer & L. Frearson
  - Ekistica, Alice Springs, Australia

**5DO.1.3 Assessment and Improvement of Ground-Based Irradiance Measurements**
- F. Mariottini, M. Bliss & T.R. Betts
  - Loughborough University, United Kingdom
- G. Belluardo
  - Eurac Research, Bolzano, Italy
- I.R. Cole
  - University of Cyprus, Nicosia, Cyprus

**5DO.1.4 Comparative Analysis of Albedo Measurements (Plane-of-Array, Horizontal, Satellite) at Multiple Sites Worldwide**
- S. Dittmann
  - Anhalt University of Applied Sciences, Köthen, Germany
- L. Burnham
  - Sandia National Laboratories, Albuquerque, United States
- S.-Y. Oh
  - Yeungnam University, Gyeongsan, Republic of Korea
- A. Benlarabi
  - IRESEN, Rabat, Morocco
- J. -H. Choi
  - KTL, Seoul, Republic of Korea
- M. Ebert & R. Gottschalg
  - Fraunhofer CSP, Halle (Saale), Germany

**5DO.1.5 Data of Value, Valuing Data: Open-Access Bankable Resource Data Project in Australia’s NT**
- S. Ong, B. Herteleer, L. McLeod, G. Dickeson, H. Norris & L. Frearson
  - Ekistica, Alice Springs, Australia

**5DO.1.6 The Impact of Plane-of-Array Based Tmy’s on Solar Resource for PV Applications**
- M. Sengupta & A. Habte
  - NREL, Golden, United States

**ORAL PRESENTATIONS 4DO.4**

**13:30 - 15:00 Inverter Design and Integration / Sustainability of PV Systems**

**Chairpersons:**
- Andreas Wade
  - First Solar, Germany
- Ralph Gottschalg
  - Fraunhofer CSP, Germany

**4DO.4.1 The Inverter: A Multi-Purpose Control Element**
- P.-J. Alet
  - CSEM, Neuchâtel, Switzerland
- N. Henze & M. Jung
  - Fraunhofer IEE, Kassel, Germany
- G. Adinolfi & G. Graditi
  - ENEA, Portici, Italy
- G. Barchi
  - Eurac Research, Bolzano, Italy
- R. Bründlinger
  - AIT, Vienna, Austria
- A. Stavrov
  - Electricity Authority of Cyprus, Nikosia, Cyprus
- G. Yang
  - Technical University of Denmark, Kongens Lyngby, Denmark
4DO.4.2 The Borgna-Converter - A New Topology for Highly Efficient PV Inverters
D. Gfeller, L. Borgna & U. Muntwyler
BFH, Burgdorf, Switzerland

4DO.4.3 Development and Evaluation of Open-Source IEEE 1547.1 Test Scripts for Improved Solar Integration
N. Ninad, E. Apablaza-Arancibia & M. Bui
CanmetENERGY, Varennes, Canada
J. Johnson & S. Gonzalez
Sandia National Laboratories, Albuquerque, United States
T. Moore & R. Heidari
CSIRO Energy Technology, Newcastle, Australia
W. Son
KERI, Gyeongsangnam-do, Republic of Korea
R. Bründlinger, R. Ablinger, C. Messner, C. Seitl & Z. Miletic
AIT, Vienna, Austria
J. Hashimoto & K. Otani
AIST, Fukushima, Japan
I. Vidaurrazaga Temez
Tecnalia, San Sebastián, Spain
F.P. Baumgartner & F. Carigiet
ZHAW, Winterthur, Switzerland
B. Fox
SunSpec Alliance, San Jose, United States
S. Kumar & J. Kumar
Central Power Research Institute, Bangalore, India

4DO.4.4 Active Façades: Life Cycle Environmental Impacts and Savings of Photovoltaic Power Plants Integrated into the Building Envelope
R. Itten & M. Stucki
ZAHW, Wädenswil, Switzerland
A. Clua Longas
EPFL, Lausanne, Switzerland
G. Cattaneo
CSEM, Neuchâtel, Switzerland

4DO.4.5 Combining Region-Specific Supply Chains with Geolocated PV Electricity Production for Life Cycle Assessment of Worldwide Silicon Photovoltaic Systems in ENVI-PV v2.0
P. Perez-Lopez, B. Gschwind & I. Blanc
MINES ParisTech, Sophia-Antipolis, France
R. Frischknecht & P. Stolz
Treeze, Uster, Switzerland
C. Mehl & M. Payeur
ADEME, Paris, France
G. Heath
NREL, Golden, United States

4DO.4.6 Towards a Circular Supply Chain for PV Modules: Review of Today’s Challenges in PV Recycling, Refurbishment and Re-Certification
J.A. Tsanakas, A.S.H. van der Heide, E. Voroshazi & J. Poortmans
imec, Genk, Belgium
E. Lemaire
CEA, Le Bourget du Lac, France
K. Wang
VITO, Mol, Belgium

ORAL PRESENTATIONS 7DO.7
13:30 - 15:00 Lessons from Around the World

Chairpersons:
Philippe Malbranche
CEA, France
Maria Getsiou
European Commission DG RTD, Belgium

7DO.7.1 Student Award Finalist Presentation: Shared Solar Cooperatives in Brazil: Context, Overcoming Barriers and Lessons to Be Drawn from Previous European Countries Experiences
K. Schneider & R. Rüther
UFSC, Florianópolis, Brazil
M.O.M. de Oliveira
OCB, Brasília, Brazil

7DO.7.2 Lessons from Utility-Scale PV in Australia: Experience from ARENA’s LSS Portfolio
L. McLeod, G. Dickeson, C. Paynter, B. Hertelee & L. Frearson
Ekistica, Alice Springs, Australia
A. Dobb
ARENA, Canberra, Australia
7DO.7.3 Solar-Era.Net - European Network of National and Regional Research and Innovation Programmes: Latest Developments of Transnational Cooperation, Project Results and Opportunities
S. Nowak, M. Gutschner & T. Biel
NET Nowak Energy & Technology, St. Ursen, Switzerland
S. Oberholzer
Swiss Federal Office of Energy, Bern, Switzerland
C. Hünnekes, R. Horbelt, K. Chakanga & M. Schulte
Forschungszentrum Jülich, Germany
E. Fernández
MINECO, Madrid, Spain
D. Ruiz
FECYT, Coruña, Spain
G. del Rio
CDTI, Madrid, Spain
P.-J. Rigole & T. Walla
Swedish Energy Agency, Eskilstuna, Sweden
O. Bernsen
RVO, Den Haag, The Netherlands
P. Leptos
RPF, Lefkosia, Cyprus
T. Carrere
ADEME, Paris, France
P. Bain
ANR, Paris, France
E. Afentaki
GSRT, Athens, Greece
A. Covello
MIUR, Rome, Italy
G. Friedmann
Ministry of Energy, Jerusalem, Israel
K. Karaösz
TUBITAK, Gebze, Turkey
E. Lutter
Climate and Energy Fund, Vienna, Austria
A. Hipfinger
FFG, Vienna, Austria

7DO.7.4 PV Performance Assessment Methods for the Implementation of European Sustainability Policy Instruments
A.M. Gracia Amillo, E.D. Dunlop, E. Salis, T. Sample & N. Taylor
European Commission JRC, Ispra, Italy
D. Polverini
European Commission DG GROWTH, Brussels, Belgium

7DO.7.5 Development of an Academic Living-Labs as Sociotechnical Imaginaries to Facilitate the Uptake of Solar Technologies in the 2Seas Region
T.E. Motoasca
KU Leuven, Ghent, Belgium

7DO.7.6 Open Science: New Challenges and Opportunities for the PV Sector
A.B. Cristobal Lopez, C. del Cañizo & A. Martí Vega
UPM, Madrid, Spain
G. Revuelta
UPF, Barcelona, Spain
L. Fialho
University of Évora, Portugal
M. Molina
EIC, Madrid, Spain
N. Tyutyundzhiev
Bulgarian Academy of Sciences, Sofia, Bulgaria
M. Ackermann
INSOLIGHT, Lausanne, Switzerland
I. Cuenca Fernández
Consejería de Medio, Seville, Spain
E. Unger
HZB, Berlin, Germany
S. Haas
Reiner Lemoine Institut, Berlin, Germany
R. Zilles
University of São Paulo, Brazil

ORAL PRESENTATIONS 5DO.2
15:15 - 16:45 Forecasting

Chairpersons:
Wilfried G.J. H.M. Van Sark
Utrecht University, The Netherlands
Ana Maria Gracia Amillo
European Commission JRC, Italy

5DO.2.1 Nowcasting of Irradiance Using a Network of All-Sky-Imagers
N. Blum, B. Nouri & S. Wilbert
DLR, Tabernas, Spain
T. Schmidt & D. Heinemann
DLR, Oldenburg, Germany
T. Schmidt
CSP Services, Cologne, Germany
P. Kuhn
Energie Baden-Württemberg, Karlsruhe, Germany
L.F. Zarzalejo
CIEMAT, Madrid, Spain
R. Pitz-Paal
DLR, Cologne, Germany
5DO.2.2 Potential for Crowdsourced Weather Stations to Assess Intra-Hourly Variability of Photovoltaic Systems
J. Lopez Lorente, X. Liu, D.J. Morrow & P. Brogan
Queen’s University Belfast, United Kingdom

5DO.2.3 Adjoint Sensitivity of Farms to the Forecasting Variables of WRF-Solar
J. Yang, M. Sengupta & Y. Xie
NREL, Golden, United States
P.A. Jimenez & J.-H. Kim
National Center for Atmospheric Research, Boulder, United States

5DO.2.4 Short-Term Photovoltaic Generation Forecasting Using Multiple Heterogenous Sources of Data
K. Bellinger, R. Girard & G. Kariontakis
Mines ParisTech, Sophia-Antipolis, France
G. Bontron
CNR, Lyon, France

5DO.2.5 Performance Test of New PV-Forecasting Models in Realistic Environments
P. Gaisberger, L. Gaisberger & R. Höller
FH-OOE, Wels, Austria
W. Traunmüller
Blue Sky, Attnang, Austria
N. Diwald
Fronius, Wels, Austria
P. Praher
SCCH, Hagenberg, Austria
M. Ehrlinger
Energie AG Trading, Linz, Austria
S. Moser
Energieinstitut an der J KU, Linz, Austria

5DO.2.6 Invited

ORAL PRESENTATIONS 2DO.5
15:15 - 16:45 Production Processes Silicon Solar Cells

Chairpersons:
Peter Fath
RCT-Solutions, Germany
Peter Wohlfart
Singulus Technologies, Germany

2DO.5.1 „Project FINALE“ - Screen and Screen Printing Process Development for Ultra-Fine-Line Contacts below 20µm Finger Width
Fraunhofer ISE, Freiburg, Germany
S. Bechmann
Koenen, Ottobrunn-Riemerling, Germany
K. Oehrle
Kissel + Wolf, Wiesloch, Germany
S. Steckemetz
SolarWorld Innovations, Freiberg, Germany

2DO.5.2 The Influence of Diffusion Condition to Passivation Quality of SiOx/Poly-Silicon Layer
Canadian Solar, Suzhou, China

2DO.5.3 PULSION®-Solar, an Efficient and Cost Effective Implantation Solution for High Efficiency Silicon Solar Cells Manufacturing
A. Lanterne, T. Desrues, A. Veu, P. Bellanger, C. Lorfeuvre & S. Dubois
CEA, Le Bourget du Lac, France
B. Barthe
University Grenoble Alpes, France
F. Torregrosa & L. Roux
Ion Beam Services, Peynier, France

2DO.5.4 Defect Engineering of n-Type Bifacial Silicon Using Dark Annealing
X. Tan, R.L. Chin, D. Chen, R. Chen & F.E. Rougieux
UNSW Australia, Sydney, Australia
2DO.5.5 Selective Patterning of PVD-Metal Stacks by Electrochemical Screen Printing for Back-Contact Solar Cells
K. Gensowski, M. Kamp, R. Efinger, G. Mikolasch & J. Bartsch
Fraunhofer ISE, Freiburg, Germany
S. Bechmann & R. Weber
KÖNEN Solar, Ottobrunn, Germany

2DO.5.6 Interpretable Machine Learning for Production Optimization
S. Wasmer & B. Klöter
Hanwha Q CELLS, Bitterfeld-Wolfen, Germany

ORAL PRESENTATIONS 6DO.8
15:15 - 16:45 PV for Buildings

Chairpersons:
Urs Muntwyler
BUAS, Switzerland
Francoise Burgun
CEA, France

6DO.8.1 Investigating the Thermal Behaviour and Degradation Rate of BIPV Modules: Case Study of a High-Rise Office Building under Different Climatic Conditions
J. Goncalves, T. van Hoof & D. Saelens
KU Leuven, Heverlee, Belgium

6DO.8.2 Monitoring the Outdoor Operating Temperature of Glass-Free Lightweight Solar Modules for Building Integrated Photovoltaics
A.C. Oliveira Martins, A. Virtuani & C. Ballif
EPFL, Neuchâtel, Switzerland
V. Chapuis
CSEM, Neuchâtel, Switzerland

6DO.8.3 PV Chimney Concept: Modelling and Demonstration of Photovoltaic Systems Integration in Double Skin Façades
Z. Haghighi, S. Wapperom, J.C. Ortiz Lizcano, C. Infante Ferreira, A. van den Dobbelsteen, O. Isabella & M. Zeman
Delft University of Technology, The Netherlands

6DO.8.4 Demonstration of a Novel Low Concentration and Solar Control Photovoltaic System for Building Integration
D. Valencia, M. Machado & A. Sanz Martinez
Tecnalia, San Sebastián, Spain
Y.B. Assoa & F. Burgun
CEA, Le Bourget du Lac, France
J. Escribano Troncoso
Acciona Infraestructuras, Madrid, Spain
E. Rico
Onyx Solar Energy, Avila, Spain
T. Reijenga
BEAR-iD, Gouda, The Netherlands
P. Brassier
Nobatek, Anglet, France
P. Surguy & L. Chan
Film Optics, Watchfield, United Kingdom
V. Francisco
CTCV, Coimbra, Portugal
P. Alonso & I. Weiss
WIP Renewable Energies, Munich, Germany

6DO.8.5 Methodology and Tool for the Electrical Layout of BIPV-Modules with Novel Design Features
J. Eisenlohr, S. Gasparotto, A. Mondon, M. Heinrich & T.E. Kuhn
Fraunhofer ISE, Freiburg, Germany

6DO.8.6 BIM – A Booster for Energy Transition and BIPV Adoption
P. Alamy
Enerbim, Seilh, France
V.K. Nguyen
CADCAMation, Onex, Switzerland
M. Machado
Tecnalia, San Sebastián, Spain
P. Alonso
WIP Renewable Energies, Munich, Germany

VISUAL PRESENTATIONS 7DV.2
15:15 - 16:45 Costs, Economics, Finance and Markets / Policies and Scenarios for Renewables, Societal and Global Challenges

Detailed information on this session is presented in the section entitled ‘Visual Presentations’.
ORAL PRESENTATIONS 5DO.3
17:00 - 18:30  Designing Systems for Specific Environments

Chairpersons:

Angèle Reinders
University of Twente, The Netherlands

Daniela Guida
ENEL Green Power, Italy

5DO.3.1  Photovoltaics in the Urban Environment: Towards a Fast, Accurate and Remote 3D-Based Energy Potential Simulation Framework
O. Isabella, A. Calcabrini, H. Ziar & M. Zeman
Delft University of Technology, The Netherlands

5DO.3.2  Analysis and Investigation of BIPV Operating Performance Based on the PV Installations at the ZSW Research Building
D. Geyer, D. Stellbogen, P. Lechner, S. Hummel, J. Schnepf & D. Huschenhöfer
ZSW, Stuttgart, Germany

5DO.3.3  Half-Cell Module Behaviour and Its Impact on the Yield of a PV Plant
M. Chiodetti, J. Dupuis & P. Dupeyrat
EDF R&D, Moret Loing et Orvanne, France
D. Boubli & K. Radouane
EDF EN, Paris La Defense, France

5DO.3.4  Bifacial PV System Mismatch Loss Estimation and Parameterization
C. Deline & S. Ayala Pelaez
NREL, Golden, United States
S. MacAlpine
Juwi Solar, Boulder, United States
C. Olalla
URV, Tarragona, Spain

5DO.3.5  A Year in the Life of Vertical Bifacial Systems on Land and Water
A.J. Carr & B.B. Van Aken
ECN part of TNO, Petten, The Netherlands
H. Lok, L.S. Bosma & T. Jansma
Hanze University, Groningen, The Netherlands

5DO.3.6  Student Award Finalist Presentation: Simulation of Performance Differences between Off-Shore and Land-Based Photovoltaic Systems
S.Z. Mirbagheri Golroodbari & W.G.J.H.M. van Sark
Utrecht University, The Netherlands

ORAL PRESENTATIONS 2DO.6
17:00 - 18:30  Characterisation & Simulation of Si Cells (II)

Chairpersons:

Dominic Walter
ISFH, Germany

Ivan Gordon
imec, Belgium

2DO.6.1  Student Award Finalist Presentation: Importance of the Injection Level for Studies on Light- and Elevated Temperature-Induced Degradation in Crystalline Silicon
M. Kim, S. Liu, D. Chen, C. Chan, M. Abbott & B. Hallam
UNSW Australia, Sydney, Australia

2DO.6.2  Extracting Metal and Edge Recombination Parameters which are Compatible with Multi-Dimensional Cell Simulations
P. Saint-Cast, D. Herrmann, P. Baliozian, H. Stolzenburg, H. Höfler & A. Fell
Fraunhofer ISE, Freiburg, Germany

2DO.6.3  A Simplified Model to Simulate Passivating & Selective Hole-Collecting Contacts
ECN part of TNO, Petten, The Netherlands

2DO.6.4  Vignetting in Luminescence Imaging Setups
G. Dost, H. Höfler & J. Greulich
Fraunhofer ISE, Freiburg, Germany

2DO.6.5  The Angular Distribution of Scattered Reflectance from Textured Silicon
D. Payne, B. Puthen-Veetill & D.M. Bagnall
Macquarie University, Sydney, Australia
M. Abbott, T.H. Fung, M.U. Khan, Y. Zhang, S. Wang, G. Scardera, B. Hoex & M.E. Pollard
UNSW Australia, Sydney, Australia

2DO.6.6  Electrical Characterization of Micro-Colloids in Si Solar Cell Screen-Printed Contacts by Conductive Atomic Force Microscopy (C-AFM)
K. Ren, D. Han & A. Ebong
UNC Charlotte, United States
17:00 - 18:30  
**ORAL PRESENTATIONS 6DO.9**

**PV Integration in Non Conventional Application**

**Chairpersons:**

Alessandra Scognamiglio  
ENEA, Italy

Alessandro Virtuani  
EPFL, Switzerland

**6DO.9.1**  
**Influence of Wave Induced Movements on the Performance of Floating PV Systems**  
M. Dörenkämper, D. van der Werf, K. Sinapis, M.M. de Jong & W. Folkerts  
TNO-SEAC, Eindhoven, The Netherlands

**6DO.9.2**  
**The Performance of a Floating PV Plant at the West Coast of Norway**  
I.H. Lereng, E.S. Marstein & J.H. Selj  
Institute for Energy Technology, Kjeller, Norway  
P. De Paoli  
UMB, Ås, Norway  
S. Bragstad & B. Bjørnekleit  
Ocean Sun, Lysaker, Norway

**6DO.9.3**  
**Dynamic Agrivoltaics: A Breakthrough Innovation**  
A.-L. Gorge, F. Sourd & J. Garcin  
Sun’R, Paris, France  
C. Dugué & G. Goaer  
Photowatt, Lyon, France

**6DO.9.4**  
**Lightweight, Flexible and High Efficiency c-Si Photovoltaic Modules for the Stratobus TM**  
J. Gaume, H. Robin & M. Joanny  
CEA, Le Bourget du Lac, France  
R. Chaix  
Thales Alenia Space, Cannes, France

**6DO.9.5**  
**Urban Microclimate in Street Canyons with Façade PV Using ENVI-met**  
S.R. Freitas  
Energy and Environment Agency of Lisbon, Portugal  
R. Ferreira & M.C. Brito  
University of Lisbon, Portugal

**6DO.9.6**  
**Angle-Dependent Optical Performance of Spectrally Selective Solar Cells for Building Integrated Applications**  
N. Osterthun, N. Neugebohm, K. Gehrke, M. Vehse & C. Agert  
DLR, Oldenburg, Germany

17:00 - 18:30  
**POSTER AWARDS WINNERS SESSION**

**Chairpersons:**

Julio Cárabe  
CIEMAT, Spain

*Detailed information on this session is presented in the section entitled ‘Visual Presentations’*
2 Silicon Materials and Cells
   T2.1 Feedstock, Crystallisation, Wafering, Defect Engineering
   T2.2 Homojunction Solar Cells
   T2.3 Heterojunction Solar Cells
   T2.4 Thin Film and Foil-Based Si Solar Cells
   T2.5 Characterisation & Simulation of Si Cells
   T2.6 Manufacturing & Production of Si Cells

6 PV Applications and Integration
   T6.1 PV on/in Buildings, Infrastructure, Landscape, Water and Nature
   T6.2 Professional Applications of PV
   T6.3 PV Driven Energy Management and System Integration

7 Finance, Markets and Policies
   T7.1 Costs, Economics, Finance and Markets
   T7.2 Policies and Scenarios for Renewables, Societal and Global Challenges
ORAL PRESENTATIONS 2EO.1

08:30 - 10:00  Manufacturing of Silicon Solar Cells

Chairpersons:

Weiwei Deng
Canadian Solar, China

Martijn Lenes
Tempress, The Netherlands

2EO.1.1 The Vision of Large Scale PV Manufacturing in Europe: A Dream or Chance for Execution?
P. Fath & W. Jooss
RCT-Solutions, Constance, Germany
A.W. Bett, S. Nold & J. Rentsch
Fraunhofer ISE, Freiburg, Germany
J. Trube
VDMA, Frankfurt am Main, Germany

2EO.1.2 Toward 25% Silicon Cell Efficiency in Mass-Production: Strategies and Prospects Based on Industrial Data
Trina Solar Energy, Changzhou, China
P.J. Verlinden
Amrock, McLaren Vale, Australia

2EO.1.3 ‘HJT 2.0’ Performance Improvements and Cost Benefits for Silicon Heterojunction Cell Production
Meyer Burger Research, Haurive, Switzerland

2EO.1.4 Large Area TOPC on Cells Realized by a PECVD Tube Process
Fraunhofer ISE, Freiburg, Germany

2EO.1.5 Characterization of Passivated Contacts Formed with Different Metal Pastes on LPCVD Poly-Si Based monoPoly(TM) Solar Cells
P. Padhamnath, J.K. Buatis, L.M. Ortega, N. Nandakumar, V. Shanmugam & S. Duttagupta
SERIS, Singapore, Singapore

2EO.1.6 Automatic Defect Detection in Electroluminescence Images for PV Mass Production Using Deep Learning
M. Patzold, K. Kaufmann, C.-M. Lin, M. Rudolph, T. Burwig & D. Lausch
DENKweit, Halle (Saale), Germany

ORAL PRESENTATIONS 6EO.2

08:30 - 10:00  Professional Applications of PV

Chairpersons:

Gaétan Masson
Becquerel Institute, Belgium

Hubert A. Aulich
SC Sustainable Concepts, Germany

6EO.2.1 A Feasibility Study of Solar PV Powered Electric Cars Using an Interdisciplinary Modeling Approach for the Electricity Balance, CO2 Emissions and Economic Aspects - The Cases of The Netherlands, Norway and Brazil
T. de Santana & A.H.M.E. Reinders
University of Twente, Enschede, The Netherlands
N.J. Ekins-Daukes
UNSW Australia, Sydney, Australia

6EO.2.2 VIPV: c-Si Modules Design, Manufacturing and Integration on a Solar Car Demonstrator
V. Maneval, T. Duigou, J. Gaume, L. Serra, H. Robin, S. Guillerez & M. Joanny
CEA, Le Bourget du Lac, France

6EO.2.3 Some Approaches of PV-Powered Vehicles Applications
M. Yamaguchi, K. Araki, K.-H. Lee & N. Kojima
Toyota Technological Institute, Nagoya, Japan
T. Masuda & A. Sabu
Toyota, Susono, Japan
M. Hasegawa & H. Yamada
NEDO, Kawasaki, Japan
6EO.2.4 Efficient Si Photovoltaics for Electrically Powered Utility Vehicles – STREET
ISFH, Emmerthal, Germany
G. Wetzel & J. Krügener
MBE, Hannover, Germany
H.-J. Nonnenmacher & H. Mehlich
Meyer Burger, Hohenstein-Ernstthal, Germany
M. Stein & R. Wecker
a2solar, Erfurt, Germany
A. Schiessl & J. Süß
Continental CPT Group, Regensburg, Germany
F. Metzger & C. Schreibmüller
StreetScooter, Aachen, Germany
K. Ding, A. Lambertz, W. Duan, A. Mikosch & B. Pieters
Forschungszentrum Jülich, Germany
B. Stannowski & L. Korte
HZB, Berlin, Germany

6EO.2.5 Feasibility of Hydroponic Solar Sharing System without Liquid Fertilizer
H. Kubo & K. Okoso
Chiba Institute of Technology, Narashino-city, Japan
S. Maeno
mSe Corporation, Chiba-city, Japan

6EO.2.6 Solar Powered Electrolytic Water Treatment for Industrial Application
S. Shimura
IFSP, São Paulo, Brazil
R. de Paula Diver
UNICAMP, Campinas, Brazil

ORAL PRESENTATIONS 7EO.3
08:30 - 10:00 Economic and Market Analisys

Session Chair:
Silvia Caneva
WIP Renewable Energies, Germany
Izumi Kaizuka
RTS Corporation, Japan

7EO.3.1 A Snapshot of Global PV Markets - The Latest Survey Results on PV Markets and Policies from the IEA PVPS Programme in 2018
G. Masson
Becquerel Institute, Brussels, Belgium
I. Kaizuka
RTS Corporation, Chuo-ku, Japan
J. Lindahl
Swedish PV Association, Stockholm, Sweden
A. Jäger-Waldau
European Commission JRC, Ispra, Italy
J. Donoso Alonso
UNEF, Madrid, Spain

7EO.3.2 Impact of WACC and Other Parameters on Future Utility-Scale PV LCOE
E. Vartiainen
Fortum Growth, Finland
G. Masson
Becquerel Institute, Brussels, Belgium
C. Breyer
LUT University, Lappeenranta, Finland
D. Moser
Eurac Research, Bolzano, Italy
E. Román Medina
Tecnalia, San Sebastian, Spain

7EO.3.3 IPVF's PV Technology Vision 2030
L. Oberbeck
Total Gas, Renewables and Power, Paris, France
K. Alvino & B. Goraya
IPVF, Palaiseau, France
M. Joubault
EDF R&D, Palaiseau, France
D. Lincot
CNRS, Palaiseau, France
7EO.3.4  PV LCOE for Different Market Segments in Italy with and without Storage Systems  
E. Veronese & D. Moser  
Eurac Research, Bolzano, Italy  
G. Manzolini  
Polytechnic University of Milan, Italy

7EO.3.5  Analysis for Low Market Uptake of BIPV  
S. Broß, E. Grommes, A. Krenz & U. Blieske  
Cologne University of Applied Sciences, Germany  
F. Flade & G. Becker  
Bavarian Association for the Promotion of Solar Energy, Munich, Germany

7EO.3.6  Modules at a Price of 10 $ct/Wp - Dream or Reality?  
W. Hoffmann  
ASE, Hanau, Germany  
A. Metz  
VDE Renewables, Alzenau, Germany

7EP.1.1  Solar Electricity and Safe Drinking Water: Global Opportunities and Challenges  
H.A. Aulich  
Sustainable Concepts, Erfurt, Germany  
A. Goldmaier & P. Otter  
AUTARCON, Kassel, Germany  
A.O. Ighodaro  
KXN, London, United Kingdom

6EP.1.2  Lesson Learnt from Multi Megawatt Projects Integrated into Landscapes and Buildings  
E. Scotto  
Akuo Energy, Paris, France

7EP.2.1  The Role of Photovoltaics in a Sustainable European Energy System under Variable CO2 Emissions Targets, Transmission Capacities, and Costs Assumptions  
M. Victoria, K. Zhu, G.B. Andresen & M. Greiner  
Aarhus University, Denmark  
T. Brown  
Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany

7EP.2.2  PV Technologies: How Might These Evolve?  
M.A. Green  
UNSW Australia, Sydney, Australia

7EP.2.3  Mass-Scale Solar Hydrogen: How PV is Set to Become the New Oil  
T. Lepercq  
Solairestream, Paris, France
12:10 – 13:10  CONFERENCE CLOSING

Keynote, Highlights of the Conference, Poster Awards, Student Awards, Farewell

Welcome:

Florence Lambert
EU PVSEC 2019 General Chair
Director of CEA Liten (the Laboratory for Innovation in new Energy Technologies and Nanomaterials)

Highlights of the Conference Week

Robert Kenny
EU PVSEC Technical Programme Chair
European Commission Joint Research Centre

Ceremony of the Student Awards

Arno Smets
EU PVSEC Student Awards Coordinator
Delft University of Technology, The Netherlands

Ceremony of the Poster Awards

Julio Cárabe
EU PVSEC Poster Awards Coordinator
CIEMAT, Spain

Announcement upcoming PV events

What do we take home from the EU PVSEC? Farewell and Closing

Florence Lambert
EU PVSEC 2019 General Chair
Director of CEA Liten (the Laboratory for Innovation in new Energy Technologies and Nanomaterials)

At the time of printing the detailed Programme of the Closing Event is under final preparation. Please visit www.photovoltaic-conference.com for all information.
Monday, 09 September 2019

13:30 - 15:00  POSTER AWARDS KICK-OFF

VISUAL PRESENTATIONS 4AV.1
15:15 - 16:45  PV Module Design, Manufacture, Performance and Reliability (I)

Chairpersons:
Ralph Gottschalg
Fraunhofer CSP, Germany

Ulrike Jahn
TÜV Rheinland Energy, Germany

4AV.1.3  Corrosion Mechanism of Anodized PV Frame in the Accelerated Salt Spray Test
H.-H. Hsieh
ITRI, Hsinchu, Taiwan
W. Kai
National Taiwan Ocean University, Keelung, Taiwan
J.-F. Wen
United Renewable Energy, Hsinchu, Taiwan

4AV.1.4  Power Stabilization of Crystalline PV Modules
R. Ebner & G. Újvári
AIT, Vienna, Austria
W. Mühleisen & C. Hirschl
CTR, Villach, Austria

4AV.1.5  Measurement of Water Vapor Transmission Rate of PV Backsheet with Highly Accelerated Stress Test
Y.T. Li, C.F. Hsieh & S.-H. Chen
ITRI, Hsinchu, Taiwan
H.-L. Wu & P. Yu
National Chiao Tung University, Hsinchu, Taiwan

4AV.1.6  Experimental Benchmarking of Partial Shading Effect on Thin-Film and Crystalline-Silicon Solar Photovoltaic Modules
K.A.K. Niazi, Y. Yang, S.V. Spataru, M.U. Mutarraf & D. Sera
Aalborg University, Denmark
**4AV.1.7** Optimization and Design Issues of Bifacial PV Modules and Systems  
W. Mühleisen, L. Neumaier & C. Hirschl  
CTR, Villach, Austria  
B. Pletz & G. Safran  
PVP Photovoltaik, Wies, Austria  
G. Újvári, A. Mittal, M. Schwark & S. Zamin  
AIT, Vienna, Austria

**4AV.1.8** Accelerated TC Test in Comparison with Standard TC Test for PV Modules  
C.H. Schiller, L.C. Rendler, S. Stecklm, D. Eberlein,  
A. Kraft & H. Neuhaus  
Fraunhofer ISE, Freiburg, Germany

**4AV.1.9** The Analysis of Electrical Characteristics of Separated Solar Cell by Laser Scribing for High Performance Shingled PV Module  
Y.-J. Kim, Y.-K. Min, J.-W. Kang, J.-W. Baik, E.-J. Lee,  
D.-S. Kim, C.-S. Park & K.-K. Hong  
Shinsung E&G, Jeungpyeong-gun, Republic of Korea

**4AV.1.10** Contributing to the Quality of PV Solar Modules in West Africa  
N. Wyrsch  
EPFL, Neuchâtel, Switzerland  
M.L. Ndiaye, A. Ndiaye & C.M.F. Kebe  
ESP, Dakar Fann, Senegal

**4AV.1.12** Optimisation of Bifacial Photovoltaics Module with Reflective Layer in Outdoor Performance  
E. Sng  
REC Solar, Singapore, Singapore  
S. Channabasappa Devihsosur, R. Swaminathan, S. Roy &  
I.L.H. Lim  
University of Glasgow, United Kingdom  
M. Kurinji  
Ngee Ann Polytechnic, Singapore, Singapore

**4AV.1.14** Investigating Partial Shadowing of PV Module at Solar Cell Level  
L. Feng, S. Hempelmann, M. Grüneis, G. Behrens &  
F.U. Hamelmann  
University of Applied Sciences Bielefeld, Minden, Germany

**4AV.1.15** Differential Scanning Calorimetry for Simulation and Optimization of PV Module Lamination  
C. Herzog, T. Müller, M. Heinrich & H. Neuhaus  
Fraunhofer ISE, Freiburg, Germany

**4AV.1.16** Additive Analysis in Encapsulant Materials and Correlation to Encapsulant Degradation Modes  
C. Barretta & G. Oreski  
PCCL, Leoben, Austria  
K. Resch-Fauster  
University of Leoben, Austria

**4AV.1.17** Parallel Natural Weathering of Backsheets across Europe  
L. Castillon & G. Oreski  
PCCL, Leoben, Austria  
J. Ascendo-Vásquez & M. Topič  
University of Ljubljana, Slovenia  
A. Panos & K.-A. Weiß  
Fraunhofer ISE, Freiburg, Germany

**4AV.1.18** Assessment and Evolution of Initial Mono-PERC Module Degradation Using Light Induced Degradation, Carrier Induced Degradation and Outdoor Exposure  
J. Dupuis, G. El Hajje & P. Dupeyrat  
EDF R&D, Moret-sur-Loing, France  
E. Sandre & K. Radouane  
EDF Renewables, Paris, France

**4AV.1.19** Influence on the CASS Testing for Module Materials  
C.-W. Kuo, T.-M. Kuan, W.-L. Chueh, Y.-H. Chao,  
L.-G. Wu & C.-Y. Yu  
TSEC, Hsinchu, Taiwan  
M.-A. Tsai & H.-H. Hsieh  
ITRI, Hsinchu, Taiwan

**4AV.1.20** Techno-Economic Analysis of Half-Cell Modules - The Impact of Half-Cells on Module Power and Costs  
M. Mittag, A. Pfrendt, J. Shahid & H. Neuhaus  
Fraunhofer ISE, Freiburg, Germany

**4AV.1.22** Mechanical Stability of the Semi-Flexible HJT Solar Panels  
S. Yakovlev, K. Emtsev, D. Andronikov, A. Abramov &  
D. Orehkov  
R&D Center TFTE, St. Petersburg, Russia  
I. Shakhray  
Avelar Solar Technology, Moscow, Russia

**4AV.1.23** Determination of Depth-Dependent Variations in the Degree of Crosslinking of EVA due to Changing Lamination Parameters Using Raman Spectroscopy  
K. Harms, L. Neumaier & C. Hirschl  
CTR, Villach, Austria
4AV.1.24  Direct Measurement of Moisture Ingress in PV Laminates  
N. Kyranaki & T.R. Betts  
CREST, Loughborough, United Kingdom  
R. Gottschalg  
Fraunhofer CSP, Halle (Saale), Germany

4AV.1.25  Analysis of Drivers for PV-Material Yellowing Upon Artificial Aging  
Y. Voronko & G.C. Eder  
OFI, Vienna, Austria  
M. Edler  
ISOVOLTAIC, Solinex, Lebring, Austria  
G. Oreski  
PCCL, Leoben, Austria  
W. Mühleisen  
CTR, Villach, Austria

4AV.1.26  Pathways of Uncertainties in Service Lifetime Prediction (SLP) Models for PV Modules: How to Improve the Accuracy?  
I. Kaaya & K.-A. Weiss  
Fraunhofer ISE, Freiburg, Germany

4AV.1.27  Characterisation of the Reverse DC Resistance due to Potential Induced Degradation (PID) in Crystalline PV Cells  
M. Florides, G. Makrides & G.E. Georgiou  
University of Cyprus, Nicosia, Cyprus

4AV.1.28  Qualification of Polyolefin Backsheet for PV Modules  
P. Gebhardt & D. Philipp  
Fraunhofer ISE, Freiburg, Germany  
P. Hülsmann  
Bischof + Klein, Lengerich, Germany

4AV.1.29  Impact of Highly Breathable Polyolefin Backsheet on EVA Yellowing  
P. Gebhardt & D. Philipp  
Fraunhofer ISE, Freiburg, Germany  
F. Rummens  
RENOLIT, Oudenaarde, Belgium

4AV.1.30  Performance and Reliability of Bifacial Modules Using a Transparent Backsheet  
W.J. Gambogi, M. Demko, T. Felder, S. MacMaster,  
B.-L. Yu & K. Roy-Choudhury  
DuPont, Wilmington, United States  
A. Borne  
DuPont, Geneva, Switzerland  
H. Hu & Z. Pan  
DuPont, Shanghai, China

4AV.1.31  H2020: Solar Train MSCA Fellowship Combined Effect of UV, Temperature and Humidity on Mono-Crystalline Mini-Modules Ageing Using UV LED Lamps at Specific Wavelengths  
A. Nairi, J. Bengoechea, M.J. Rodriguez & A.R. Lagunas  
CENER, Saraguren-Navarra, Spain  
D.E. Mansour & L. Pitta Bauermann  
Fraunhofer ISE, Freiburg, Germany

4AV.1.32  Artificial Soiling Testing and Performance Determination of Functional Coatings  
E. Klimm, C. Siess, T. Kaltenbach & K.-A. Weiss  
Fraunhofer ISE, Freiburg, Germany

4AV.1.33  The Effect of Shadows from People and Cleaning Tools on the STC Power of CIGS Thin-Film PV Modules  
M. Kitze  
Avancis, Torgau, Germany  
S. Grünsteidl, P. Borowski, T. Dalibor & J. Palm  
Avancis, Munich, Germany

4AV.1.34  Modelling the Generation and Diffusion of Acetic Acid in Aged Ethylene-Vinyl Acetate-Based Encapsulants Used in Solar Modules  
L. Gnocchi, A. Virtuani, E. Annigoni & C. Ballif  
EPFL, Neuchâtel, Switzerland  
H.-Y. Li  
CSEM, Neuchâtel, Switzerland

4AV.1.36  Investigation of Stabilization Procedures for Power Determination of Thin-Film Modules  
T. Weber, L. Schmidt, M. Grieben, N. Pongthanacharoenkul,  
L. Podlowski, P. Grunow & S. Xuereb  
PI Berlin, Germany

4AV.1.37  Development of Ultra-Accelerated Ageing Tests for Improved Reliability and Durability of Bifacial Photovoltaic Modules in Harsh Desert Conditions  
J.-F. Lelievre, B. Hladys, D. Muñoz & A. Derrier  
CEA, Le Bourget du Lac, France  
E. Cabrera  
ISC Konstanz, Germany  
V. Gutierrez  
Fraunhofer Chile Research, Santiago, Chile  
P. Ferrada  
University of Antofagasta, Chile
4AV.1.38 Influence of Large Periods of DC Current Injection in c-Si Photovoltaic Panels
University of Valladolid, Spain

4AV.1.39 Light Management Coatings for Solar Modules by Large-Area Nanoimprinting
L.W. Veldhuizen & R.A.J.M. van Erven
Morphophotonics, Veldhoven, The Netherlands

4AV.1.40 Optimising SHJ Solar Cell Bifaciality towards a Monolithic Module Architecture
J. Eymard, V. Barth, L. Basset, E. Gerritsen & A. Danel
CEA, Le Bourget du Lac, France
M. Hebert & R. Clerc
University of Lyon, Saint-Etienne, France

4AV.1.41 Coupled Multi-Physics Model for Simulating Thermal Behavior, Electrical Yield and Structural Reliability of Monofacial and Bifacial Photovoltaic Modules under Desert Environment
S. Ahzi, S.P. Aly & N. Barth
QEERI, Doha, Qatar

4AV.1.42 Numerical and Experimental Investigations on the Effect of Different Frame and Mounting Configurations of polycrystalline PV Modules for Crack Propagation and Degradation
L. Papargyri, M. Theristis, P. Papanastasiou & G.E. Georgiou
University of Cyprus, Nicosia, Cyprus
B. Kubicek
AIT, Vienna, Austria

4AV.1.45 One Step towards General Mathematical Formulation of Shading Tolerability for Photovoltaic Modules
H. Ziar, O. Isabella & M. Zeman
Delft University of Technology, The Netherlands

4AV.1.46 Acceptable Volume of Investment for “Combined Stress Testing”
T. Tanahashi & K. Sakurai
AIST, Tsukuba, Japan
M. Woodhouse & P. Hacke
NREL, Golden, United States

4AV.1.47 Superhydrophillic Self Cleaning SiO2/TiO2 Thin Film Coating for Solar Glass Cover Application
A. Abhinav & S. Mallick
IIT Bombay, Mumbai, India

4AV.1.48 Cell Strength Test in Laminates – Findings and Practical Relevance
M. Pander, U. Zeller, B. J. eckel & M. Ebert
Fraunhofer CSP, Halle (Saale), Germany

4AV.1.49 Development of Conductive Back-Sheet for Manufacture of PV Modules with Back-Contact Cells
G.J.W. Meijers & I.J. Bennett
DSM, Geleen, The Netherlands

4AV.1.50 Improvements in Energy Yield and Financial Benefits for Next-Generation DSM AR Coatings
DSM, Geleen, The Netherlands
Y. Lei
DSM, Shanghai, China
F. Dross
DSM, Parsippany, United States

4AV.1.51 Laser-Assisted Bonding (LAB) and Hybrid Underfill Technology for Module Fabrication Based on Silicon Back Contact Solar Cell
K.-S. Choi, J. Joo, S.H. Moon & Y.-S. Eom
ETRI, Daejeon, Republic of Korea

4AV.1.54 Reliability and Durability Influence of Different Backsheet for PV Modules in High Humidity Environment
H. Gong, M. Gao & Y. Guo
Suntech Power, Wuxi, China

4AV.1.55 Experimental Validation of a Numerical Model of the Mechanical Behaviour of Photovoltaic Modules
E. Boyère, A. Grousset, J.-C. Le Roux & D. Binesti
EDF R&D, Eculles, France
L. Flandi
EDF R&D, Palaiseau, France
J.-N. Jaubert
Canadian Solar, Suzhou, China

4AV.1.56 Performance Degradation of Solar Modules for Solar Roadways
J.H. Kim
DGIST, Daegu, Republic of Korea
F. Khan
KFUPM, Dhahran, Saudi Arabia
4AV.1.58  From Degradation Kinetics in PV Modules to Residual Lifetime Prognostics  
H. Hieber & H. Gropius  
ICR, Weimar, Germany

4AV.1.59  Numerical Calculation for Internal Heat Flow through Applying a Heat Dissipation Structure to the Rear Side of PERC Solar Module  
S.H. Jung, J. Kim, Y. Kim & S.M. Kim  
GERI, Gumi, Republic of Korea  
M.G. Kang & H.-E. Song  
KIER, Daejeon, Republic of Korea

4AV.1.60  Failure Mechanisms in PID Resistant PV Modules Under Enhanced Environmental Humidity and Soiling Stress  
V. Naumann, K. Ilse, M. Pander & C. Hagendorf  
Fraunhofer CSP, Halle (Saale), Germany

4AV.1.61  Study of PID Mechanism for n-Type Bifacial Solar Cells  
I. Devoto & A. Halm  
ISC Konstanz, Germany

VISUAL PRESENTATIONS 4AV.2

17:00 - 18:30  PV Module Design, Manufacture, Performance and Reliability/ Inverters and Balance of System Components/ Sustainability and Recycling

Chairpersons:

Werner Hermann  
TÜV Rheinland Energy, Germany

Nicola Pearsall  
Northumbria University, United Kingdom

Mariska de Wild-Scholten  
SmartGreenScans, The Netherlands

4AV.2.1  Correlation Analysis of Environmental Variables for Pb Free p-PERC Bifacial c-Si PV Module in Floating and Marine PVs  
Konkuk University, Seoul, Republic of Korea  
G.-G. Kim  
Chungbuk Technopark, Jinchon, Republic of Korea  
C.-S. Won  
Floating PV Team, Gyeonggi-Do, Republic of Korea  
O. Kwon & H. Jo  
K-water, Daejeon, Republic of Korea  
H.J. Go  
Koenergy, Gyeongsangnam-Do, Republic of Korea

4AV.2.2  The Development of Moisture Monitoring for Photovoltaic Module  
H.-L. Wu & P. Yu  
National Chiao Tung University, Hsinchu, Taiwan  
Y.T. Li, C.F. Hsieh & S.-Y. Ting  
ITRI, Hsinchu, Taiwan

4AV.2.3  Characterization and Optimization of an Inline PV Module Flash Tester in Terms of Realistic Bifacial Module Assessment in the Manufacturing Line  
L. Neumaier, W. Mühleisen, A. Frank & C. Hirschl  
CTR, Villach, Austria  
G. Safran  
PVP Photovoltaik, Wies, Austria

4AV.2.4  Power Performance of Bifacial c-Si PV Module at Low Irradiance Environments for Rooftop Applications  
Konkuk University, Seoul, Republic of Korea  
C.-S. Won  
Scotra, Pyeongtaek, Republic of Korea  
Y.K. Kwon  
Korea Testing Laboratory, Ansan, Republic of Korea  
C.Y. Cho  
Sun engineering, Daejeon, Republic of Korea  
H. Jo & O. Kwon  
K-water, Daejeon, Republic of Korea  
H.J. Go  
Koenergy, Jinjeo, Republic of Korea

4AV.2.5  LED-Based Differential Spectral Responsivity Measurements of PV Modules  
H. Sträter, S. Riechelmann, F. Plag & S. Winter  
PTB, Braunschweig, Germany

4AV.2.6  Quantitative Analysis of Electroluminescence Imaging of a PV Module with Different Mismatch Levels  
J.D. Santos, A. Valverde & M.C. Alonso-García  
CIEMAT, Madrid, Spain

4AV.2.8  The Electrochemical Reactions in Crystalline Silicon Solar Modules  
H. Yang & H. Wang  
Xi’an Jiaotong University, China

4AV.2.9  Statistical El-Image Evaluation for Describing the Degradation of PV-Modules after a Hailstorm  
C. Buerhop-Lutz, T. Pickel & J. Hauch  
HI E RN, Erlangen, Germany  
T. Winkler & C. J. Brabec  
FAU, Erlangen, Germany
4AV.2.10 In Situ Contactless Phosphor Thermometry of Encapsulated Photovoltaic Devices
National Physical Laboratory, Teddington, United Kingdom

4AV.2.11 Characterizing the Angular Distribution of an LED-Based Solar Simulator for PV Modules
S. Riechelmann
PTB, Braunschweig, Germany

4AV.2.12 Multiple Linear Regression Model for Evaluation of Indoor and Outdoor Measurements of Chalcopyrite Thin Film Modules
HZB, Berlin, Germany
B. Szyszka
Berlin University of Technology, Germany

4AV.2.13 Development of Industrial Automation PLC Based for PV Module
Y. Ouberrhi, H. Yatimi & E. Aroudam
Abdelmalek Essaadi University, Tetouan, Morocco

4AV.2.14 Making the Most of Module Matrix Measurements - IEC 61853-1
A. Driesse
PV Performance Labs, Freiburg, Germany
J.S. Stein
Sandia National Laboratories, Albuquerque, United States

4AV.2.15 First Results from a High Precision Indoor & Outdoor PV Module Monitoring Campaign
C. Reise, U. Kräling, E. Schnabel & K. Kiefer
Fraunhofer ISE, Freiburg, Germany
U. Bohnert
Munich Re, Germany

4AV.2.16 Reducing Measurement Uncertainty of Temperature Coefficients
T. Slikker, E. Garcia Goma & S. Roest
Eternal Sun, The Hague, The Netherlands

4AV.2.17 Highly Accurate Irradiation and Temperature Control for Next-Generation PV Module Characterisation
A. van der Heide, J. Govaerts, J.A. Tsanakas, M. Aleman & E. Voroshazi
imec vzw, Genk, Belgium
N. Harder
Total, Paris la Defense, France

4AV.2.18 Degradation Analysis of PV Module Technologies in a Moderate Subtropical Climate
European Commission JRC, Ispra, Italy

4AV.2.19 Energy Yield Analysis of Bifacial PV Modules: Different Technologies and Configurations
A.M. Gracia Amillo, J. Lopez-Garcia, R.P. Kenny & T. Sample
European Commission JRC, Ispra, Italy

4AV.2.20 Failure Diagnosis on Photovoltaic Modules Using Visual Inspection, Thermography, Electroluminescence and I-V Techniques
University of Valladolid, Spain

4AV.2.21 Evaluation of Tilt Angle Effect on Soiling of PV Modules in Dubai, UAE
A. Elnosh, A. Safieh, J.J. John & A. Alnuaimi
DEWA, Dubai, United Arab Emirates

4AV.2.22 Investigation on Shunt Severity in PV Modules by Electroluminescence Imaging and Lock-in Thermography
S. Roy, S. Kumar, R. Meena & R. Gupta
IIT Bombay, Mumbai, India

4AV.2.23 Determination of Temperature Coefficient of Photovoltaic Modules
O. Bazırk & S. Meric
TUBITAK-UME, Kocaeli, Turkey

4AV.2.24 Energy Yield Comparison between Bifacial and Monofacial PV Modules- Real World Measurements in Desert Climate (BWh)
J. Saal, J. Bonilla Castro & M. Schweiger
TÜV Rheinland, Cologne, Germany

A. Migan-Dubois
GeePs, Gif-sur-Yvette, France
J. Badosa
CNRS, Palaiseau, France
V. Bourdin
LIMSI, Orsay, France
4AV.2.26 **Dozens of GWp with Structured Ribbons, Films, Multiwire and No Robust Method for Angular Response Characterization: New Hemispheric IAM (HIAM) Test for an IEC 61853-2 Amendment**
M. Falsini
Florence, Italy

4AV.2.27 **Angular Response Measurement of Thin-Film PV Modules with Solar Simulators**
W. Herrmann, L. Rimmelspacher, J. Bonilla & M. Schweiger
TÜV Rheinland Energy, Cologne, Germany

4AV.2.28 **Quantitative Electroluminescence Imaging of PV Modules: Low-Frequency Blur Removal**
K.G. Bedrich, Y. Wang & Y. S. Khoo
SERIS, Singapore, Singapore

4AV.2.29 **Temperature Reduction in Infinite Photovoltaic Solar Arrays**
A. Glick, N. Ali, J. Bossuyt, G. Recktenwald & R.B. Cal
Portland State University, United States
M. Calaf
University of Utah, Salt Lake City, United States

4AV.2.30 **In-Depth Degradation Analysis of Polyamide-Based Backsheets in Fielded Modules under Different Climates**
Y. Lyu, A. Fairbrother, J.H. Kim & X. Gu
NIST, Gaithersburg, United States
M.D. Kempe
NREL, Golden, United States
S. Julien & K.T. Wan
Northeastern University, Boston, United States
S. Napoli, A. Hauser & G. O’Brien
Arkema, King of Prussia, United States
Y. Wang, L. Bruckman & R.H. French
CWRU, Cleveland, United States
L. Ji & K. Boyce
Underwriters, Northbrook, United States

4AV.2.31 **Effect of Curing Temperature on Properties of Ethylene Vinyl Acetate (EVA) Used for c-Si Solar Module Encapsulation**
B. Adothu, A. Abhinav, S. Zele & S. Mallick
IIT Bombay, Mumbai, India
A.K. Singh
Renewsys, Bangalore, India

4AV.2.32 **PV Module Design, Manufacture, Performance and Reliability**
C. Beitel & C. Kadir
Renewable Energy Test Center, Fremont, United States

4AV.2.33 **A Study on the Relationship Between Factors Affecting Peel Strength and Efficiency in Half Cell Multi-Wires Photovoltaics Module**
S.H. Kim, H.J. Son & J.H. Kim
KETI, Seongnam, Republic of Korea

4AV.2.34 **New PV System Concept - Wireless PV Module Prototype**
F. Carigiet, R. Nefert, T. Baumann & F.P. Baumgartner
ZHAW, Winterthur, Switzerland
C.J. Brabec
FAU, Erlangen, Germany

4AV.2.35 **A New Dual-Buck Five-Level Inverter with Coupled Inductors for PV System Application**
National Cheng Kung University, Tainan, Taiwan

4AV.2.36 **Validated Testing of Grid-Connected PV Inverters for LV Grids by Means of Controller-Hardware-in-the-Loop (CHIL) Setup**
G. Lauss, Z. Miletic, C. Messner, F. Leimgruber & C. Seidl
AIT, Vienna, Austria

4AV.2.37 **Operating Temperature Development of Overcommitted Inverters**
U. Muntwyler, M. Lanz & T. Schott
BUAS, Burgdorf, Switzerland
M. Bolliger
BKW, Bern, Switzerland

4AV.2.38 **Converter Based PV-Emulator Using Artificial Neural Network Control Strategy**
M. Bolouky, J. Milimonfared & A. Eskandari
Amirkabir University of Technology, Tehran, Iran
M. Aghaei
Albert-Ludwigs-University of Freiburg, Germany

4AV.2.39 **PV Connectors a Crucial Part of the Reliability of PV Installations – Computer-Tomography (CT) as a Promising Method to Detect Cross Connections of PV Connectors**
U. Muntwyler & E. Schüpbach
BUAS, Burgdorf, Switzerland
S. Schielly
Stäubli Electrical Connectors, Allschwil, Switzerland
4AV.2.46 Technological and Ecological Assessment of Concepts for Sustainable Photovoltaics
G. Oreski, A. Omazic & A. Wolfberger
PCCL, Leoben, Austria
G.C. Eder
OFI, Vienna, Austria
L. Neumaier & C. Hirschl
CTR, Villach, Austria
M. Wellacher & T. Dobra
University of Leoben, Austria
N. Lenck
VDE Renewables, Hanau, Germany

4AV.2.47 Ecological Footprint of PV Electricity: Influence of Waste Management, Degradation and Lifetime
K.-A. Weiß, S. Herceg & S. Pinto
Fraunhofer ISE, Freiburg, Germany

4AV.2.48 Sustainability Performance of Industrial Scale Heterojunction Technology (HJT) for Solar Photovoltaics (PV): Using Life Cycle Assessment (LCA) Methods to Assess Environmental and Social Impacts and Benefits of the AMPERE Project
D. Reid
ERM, Oxford, United Kingdom
B. Hartlin, C. Pouloupolous & E. Bauguen
ERM, London, United Kingdom

4AV.2.49 A Parameterized Model for the Estimation of Life-Cycle Environmental Impacts of Crystalline PV Systems
S. Tannous, R. Besseau, I. Blanc & P. Perez-Lopez
MINES ParisTech, Sophia-Antipolis, France
A. Prieur-Vernat & J. Clavreul
ENGIE, Paris, France
M. Payeur
ADEME, Valbonne, France

4AV.2.50 Update of the Projection of the Photovoltaic Waste in Spain until 2050
J.D. Santos & M.C. Alonso-García
CIEMAT, Madrid, Spain

4AV.2.51 Recycling Silver from Decommissioned Silicon Photovoltaic Solar Cells
R. Deng, J. Jiang, S. Wang, J. Ji & C.M. Chong
UNSW Australia, Sydney, Australia

4AV.2.52 An Universal Recycling Technology for Thin Film and Silicon Based Photovoltaic Modules as an Example for Circular Economy
W. Pallitzsch, A. Killenberg & I. Röver
Loser Chemie, Freiberg, Germany

4AV.2.53 Recycling Process of c-Si Photovoltaic Modules by Chemical and Thermal Operations
S. Paneliya, S. Khanna, V. Pandya, V. Bhavsar, M. Lad,
A. Ray & I. Mukhopadhyay
PDP University, Gujarat, India

4AV.2.54 Electrochemical Method for Silicon Photovoltaic Module Recycling
J.W. Ko, S.J. Park, H. Park, S.H. Bae, Y. Kang,
H.-S. Lee & D.H. Kim
Korea University, Seoul, Republic of Korea

4AV.2.55 Innovative Recycling of End of Life Silicon PV Panels: Materials Recovering and Glass Re-Use
C. Audoin & J.P. Rakotoniaina
CEA, Grenoble, France
P. Cerchier, K. Brunelli, L. Pezzato & M. Dabala
University of Padua, Padova, Italy
M. Tammaro
ENEA, Portici, Italy
G. Sabia
ENEA, Bolongna, Italy
A. Attanasio
CETMA, Brindisi, Italy
A. Nisi
I.T.O., Galatone, Italy
T. Sessa
Relight, Rho, Italy
H. Sultner
PROKO, Salzburg, Austria

4AV.2.56 Environmental and Social Impact Assessment of High-Efficient Double Side Contacted Cells with Innovative Carrier Selective Contacts
C. Pouloupolous, B. Hartlin & E. Bauguen
ERM, London, United Kingdom
D. Reid
ERM, Oxford, United Kingdom
S. Galley
ERM, Manchester, United Kingdom

4AV.2.57 Measuring the Incidence Angle Modifier of Optically Uncoupled Glass for PV Application
K. Meisenzahl, N. Schneble, M. Volk, U. Blieske,
L. Clasing & J. Müller-Ost
Cologne University of Applied Sciences, Germany
J. Münzberg & P. Hakenberg
paXos Consulting & Engineering, Cologne, Germany
Tuesday, 10 September 2019

VISUAL PRESENTATIONS 3BV.1

08:30 - 10:00  CI(G)S, CdTe and Related Thin Film Solar Cells / III-V and Related Compound Semiconductor Based Devices

Chairpersons:

Volker Sittinger
Fraunhofer IST, Germany

Gianluca Timò
RSE, Italy

3BV.1.3  Comparison of Accelerated Ageing and Metastabilities between CIGS Based Solar Cells and Thin-Film Modules
R. Vidal Lorbada, T. Lavrenko, D. Mücke & T. Walter
Ulm University of Applied Sciences, Germany

3BV.1.4  Novel Two-Stage Processing Technique towards Wide Spreading of CIGS Solar Cell Industry with Materially Efficient Fabrication
KIER, Daejeon, Republic of Korea

3BV.1.6  A European Thin Film Tandem Device Proficiency Test - Practical Outcomes and Preliminary Results
I. Lauermann
HZB, Berlin, Germany
E. Salis, D. Pavanello & H. Müllejans
European Commission JRC, Ispra, Italy
A. Gerber
Forschungszentrum Jülich, Germany
J. Wenzel Andreasen & S.A. Gevorgyan
Technical University of Denmark, Roskilde, Denmark
T.R. Betts, M. Blagovest & R. Gottschalg
Loughborough University, United Kingdom
A.O. Kodolbas & O. Yilmaz
TUBITAK, Gebze, Turkey
R. Leidl, M. Rennhofer & S. Zamini
AIT, Vienna, Austria
M. Acciarri & S. Binetti
UNIMIB, Milan, Italy
E. Lotter
ZSW, Stuttgart, Germany
K. Bakker, J.M. Kroon & W.J. Soppe
ECN part of TNO, Petten, The Netherlands
3BV.1.13 Air Reactivity of CIGS and CdTe Solar Absorbers Characterized by XPS Measurements
S. Béchu
IPVF, Palaiseau, France
M. Bouttemy, J. Vigneron, D. Aureau, M. Frégnaux & A. Etcheberry
UVSQ, Versailles, France
D. Lincot & J.-F. Guillemoles
CNRS, Palaiseau, France

3BV.1.14 Tailoring the Properties of Indium Sulfide by Doping
M. Mathew
St. Joseph’s College, Kozhikode, India

3BV.1.15 Improving Light Absorption in Cu2ZnSn(S,Se)4 Solar Cells by Down-Shifting Quantum Dot Layer
W.-L. Jeong, K.-P. Kim & D.-S. Lee
GIST, Gwangju, Republic of Korea

3BV.1.16 Optimization of Sodium and Zinc Composition of a Flexible CZTSSe on Molybdenum Foil for High Photoconversion Efficiency
K. Kim, W.-L. Jeong & D.-S. Lee
GIST, Gwangju, Republic of Korea

3BV.1.17 Experimental Study on Band Gap Discrepancies of Sputtered Cu2ZnSn(S,Se)4 Thin Films: Using Different Characterization Techniques
G. Siddharth, B.S. Sengar, V. Garg & S. Mukherjee
IIT, Indore, India

3BV.1.18 Bias Dependent Reversibility of Degradation of CIGS Solar Cells under Damp Heat and Illumination
M. Theelen, F. Hakka, F. Lanzfranchi, H. Steijvers & K. Bakker
TNO/Solliance, Eindhoven, The Netherlands
E. Haverkamp
ReRa Solutions, Nijmegen, The Netherlands
N. Barreau
IMN-UMR, Nantes, France

3BV.1.19 Investigations of Accelerated In-Line CIGS Co-Evaporation
R. Hünig, W. Hempel, T. Magorian-Friedmeier & S. Paetel
ZSW, Stuttgart, Germany

3BV.1.20 Materials Design of Cu(In,Ga)(S,Se)2 Absorber in CIGSSe Solar Cells by Using 3D Mapping of Electronic Structures
T. Wada, M. Yanagita & T. Maeda
Ryukoku University, Otsu, Japan

3BV.1.17 Increased PID Immunity of Cu(In,Ga)Se2 Solar Cells
O. Salomon, W. Hempel, O. Kiowski, E. Lotter & W. Witte
ZSW, Stuttgart, Germany
A. Ferati, A. Schneikart, G. Kaune & R. Schäffler
NICE Solar Energy, Schwäbisch Hall, Germany
D. Mücke & T. Walter
HSU, Ulm, Germany
R. Vidal Lorbada
UPM, Madrid, Germany

3BV.1.9 Light Management in Ultra-Thin Cu(In, Ga)Se2 Photovoltaic Devices
M. Kovacic, J. Krc, B. Lipovsek & M. Topič
University of Ljubljana, Slovenia
W.-C. Chen & M. Ředoff
Uppsala University, Sweden
P.J. Bolt & J. van Deelen
TNO, Eindhoven, The Netherlands
M. Zhukova, J. Lontchi & D. Flandre
ULouvain, Louvain-la-Neuve, Belgium

3BV.1.10 CIGS Device Processing on Insulated (Stainless) Steel Foils
F. Kessler, S. Spiering & R. Würz
ZSW, Stuttgart, Germany

3BV.1.11 Effects of Selenium Partial Pressure on Cu(In,Ga)Se2 Solar Cells
L.-H. Tu, W.-C. Huang & C.-H. Lai
NTHU, Hsinchu, Taiwan

3BV.1.12 The “Absolute” Quantification of Solar Absorber via a Cross-Characterization Method: The Example of Cu(In,Ga)Se2
M. Bouttemy, J. Vigneron, D. Aureau, M. Frégnaux, F. Jomard & A. Etcheberry
UVSQ, Versailles, France
S. Béchu, A. Loubat & D. Messou
IPVF, Palaiseau, France
B. Theys
CNRS-IPVF, Palaiseau, France
S. Gaiaschi, J. Marciano & P. Chapon
HORIBA, Palaiseau, France

G. Razongles
CEA, Le Bourget du Lac, France
L.V. Mercaido, F. Roca & A. Romano
ENEA, Portici, Italy
J. Hohl-Ebing & W. Warta
Fraunhofer ISE, Freiburg, Germany
J.L. Balenzategui & J.F. Trigo
Ciemat, Madrid, Spain
S. Neubert
PVcomB, Berlin, Germany
3BV.1.21 The Influence of Copper Thickness on the Defects Formation in CdTe Solar Cells
E. Artegiani, V. Kumar & A. Romeo
University of Verona, Italy

3BV.1.22 Influence of Doping Density on the Back Contact of Cu(In,Ga)Se2 Solar Cells
D. Mücke, R. Vidal Lorbada & T. Walter
Ulm University of Applied Sciences, Germany

3BV.1.23 The Investigation of the Effect of Copper Content on the Kinetics of Microwave Photoconductivity in CIGS Solid Solution
G.F. Novikov, E.V. Rabenok & M.V. Gapanovich
RAS, Chernogolovka, Russia
I.N. Odin
Lomonosov Moscow State University, Russia
V.F. Gremenok
NASB, Minsk, Belarus

3BV.1.24 Improved Photovoltaic Parameters in CdTe Solar Cells by Insertion of a i-CdO Layer
A.Q. Amjad, L. Gagara & T. Potlog
Moldova State University, Chisinau, Moldova
V. Fedorov & V. Suman
Institute of Electronic Engineering and Nanotechnologies, Chisinau, Moldova

3BV.1.25 Investigating and Improving Performance Ratio of Cu(In,Ga)(S,Se)2 Photovoltaic Devices
Avancis, Munich, Germany
University of Oldenburg, Germany
R. Klenk, P. Reyes-Figueroa, G. Farias, M. Aghaei, C. Ulbrich & E. Waack
HZB, Berlin, Germany
FAU, Erlangen, Germany

3BV.1.26 Thinner Front and Reflective Rear Contact for Increased Light Conversion of CIGS Solar Cells on Flexible Substrates
R. Hertwig, S. Nishiwaki, R. Carron, J. Löckinger, T. Feurer, S. Buecheler & A.N. Tiwari
EMPA, Dubendorf, Switzerland

3BV.1.27 Tunable Iron-Based Kesterite Thin Films for Tandem Solar Cells
V. Trifiletti, A. Spinardi & S. Binetti
University of Milan, Italy
V. Mikli, M. Danilson & M. Grossberg
Tallinn University of Technology, Estonia

3BV.1.28 Copper Electroplating on Aluminum Zinc Oxide
A. Lachowicz, C. Ballif & M. Despeisse
CSEM, Neuchâtel, Switzerland

3BV.1.30 Improved Performance of Sputtered Cu2ZnSnSe4 Solar Cell by Ge Doping Strategy
M. He, C. Yan, J. Huang & X. Hao
UNSW Australia, Sydney, Australia

3BV.1.31 Synthesis and Study of Loss Kinetics of Photogenerated Current Carriers in Cu2ZnSn(SxSe1-x)4 Solid Solutions
E.V. Rabenok, V.V. Rakitin, B.I. Golovanov & G.F. Novikov
RAS, Chernogolovka, Russia
V.F. Gremenok
NASB, Minsk, Belarus
V.V. Khoroshko
BSUIR, Minsk, Belarus

3BV.1.32 Effect of Ag Alloying on Band Offsets, Grading, and Alkali Incorporation in CIGS Solar Cells
K. Sopiha, J. Keller, M. Edoff & J.J.S. Scragg
Uppsala University, Sweden
C. Persson
University of Oslo, Norway

3BV.1.33 Back End Monolithic Interconnection of CIGS Using Shunt-Free Laser Scribing and Inkjet Printing of Dielectric and Conductive Inks
TNO, Eindhoven, The Netherlands

3BV.1.34 Spatial Atomic Layer Deposition (SALD) Studies for Buffer and Window Layers in CIGS Solar Cells towards in-Line Manufacturing Technologies
M. Balestrieri & D. Lincot
CNRS, Palaiseau, France
S. Lakhdar Chaouche, V. Huong Nguyen, J. Resende, A. Sekkat, C. Jimenez, D. Bellet & D. Munoz-Rojas
Grenoble INP, France

3BV.1.35 Optical and Electrical Design of ZnO Nanorod-Based CdTe Solar Cells with Cds and MgZn1-xO Buffer Layers
C. Özcan, D. Türkay & S. Yerci
METU, Ankara, Turkey
3BV.1.36 **Wide Band Gap CuGaSe2 Solar Cells for Tandem Application**
K. Bouras
IPVF, Palaiseau, France
M. Sood, A. Lomuscio, F. Babbe & S. Siebentritt
University of Luxembourg, Belvaux, Luxembourg
D. Lincot
CNRS, Palaiseau, France

3BV.1.37 **Cu2SnS3 Thin Films Using Chelating Effect of Hybrid Ink**
KIER, Daejeon, Republic of Korea

3BV.1.38 **Investigations and Performance Optimisation of Windowless CdTe:Se/CdTe Solar Cells**
B. Späth, V. Krishnakumar, G. Papageorgiou, C. Drost,
D. Menossi, R. Magiera, S. Böhnisch, G. Fu & B. Siepchen
CTF Solar, Dresden, Germany
O. Zywitzki, T. Modes, D. Hirsch, T. Kopte & C. Metzner
Fraunhofer FEP, Dresden, Germany
S. Peng
CTIEC, Shanghai, China

3BV.1.39 **Analysis of Growth Mechanism in Ga-Rich Cu(In,Ga)Se2 Thin Films**
K. Nakada, T. Kobayashi, T. Shimoyama & A. Yamada
Tokyo Institute of Technology, Japan

3BV.1.40 **Atomic Layer Deposition of Highly Stoichiometric Cu2SnS3 Films as Absorber Materials for Photovoltaic Applications**
T.-M. Chung, R. E. Agbenyeke, B. K. Park, Y. K. Lee,
C. G. Kim, J. H. Han
KRICT, Daejeon, Republic of Korea

3BV.1.42 **Comparison of Light Induced Metastabilities on Different Thin Film Technologies**
A. Mittal & M. Rennhofer
AIT, Vienna, Austria
V. Schloesser
University of Vienna, Austria

3BV.1.44 **Aluminum-Based Back Reflectors for Ultrathin Cu(In,Ga)Se2 Solar Cells with ITO Diffusion Barrier**
T. Schneider & R. Scheer
Martin Luther University, Halle (Saale), Germany

3BV.1.46 **High Speed MOVPE for InGaP/GaAs Multijunction Solar Cells**
H. Sodabanlu, K. Watanabe, Y. Nakano & M. Sugiyama
University of Tokyo, Japan
A. Ubukata
TNSC, Ibaraki, Japan
T. Sugaya
AIST, Ibaraki, Japan

3BV.1.48 **Analysis of Spatial Inhomogeneity in Multi-Junction Solar Cells Using Transport Efficiency Mapping**
H. Xu, K. Watanabe, Y. Nakano & M. Sugiyama
University of Tokyo, Japan
A. Delamarre & J. -F. Guillemoles
CNRS, Palaiseau, France

3BV.1.49 **Roll-Based Transfer Process of Flexible Multi-Junction Solar Cells for Mobile Applications**
KIMM, Daejeon, Republic of Korea
S. H. Jung & H. K. Kang
KANC, Suwon, Republic of Korea

3BV.1.50 **Optimization of Ion Beam Sputtered Ta2O5 Anti-Reflective Coatings for III-V Multi-Junction Solar Cells**
J. Reuna, V. Polojàrvi, M. Raappana, T. Aho, R. Isoaho,
A. Aho, A. Tukiainen, E. Atttola, S. Mäkelä & M. Guina
TUT, Tampere, Finland

3BV.1.51 **Development of Inverted-Growth 3-Junction Solar Cells with 1.0 eV Bulk GaAsBi Bottom Cell**
T. Paulauskas, V. Pacebutas, R. Butkuté,
A. Geizutis & A. Krotkus
Center for Physical Sciences and Technology, Vilnius, Lithuania
R. Jakiela
Institute of Physics PAS, Warsaw, Poland

3BV.1.52 **Optical in situ Quantification of the As versus P Content during GaAsP Graded Layer Growth for III-V-on-Si Tandems**
O. Supplie, A. Heinisch, A. Paszuk, A. Tummalieh &
T. Hannappel
Ilmenau University of Technology, Germany
M. Sugiyama
University of Tokyo, Japan

3BV.1.53 **Characterization and Pseudo-3D Modeling of GaSb Solar Cells for High Concentration Photovoltaics**
J. Kret, S. Parola, A. Vauthelin, F. Martinez, J. Tournet,
J. El Hussein, R. Vaillon, Y. Rouillard,
E. Tournié & Y. Cuminal
University of Montpellier II, France
3BV.1.54 MOCVD Grown InGaAsP-Based Single Junction Solar Cells with Bandgap-Voltage Offsets Approaching Radiative-Recombination-Only Limit
L. Li
State Key Lab of Space Powersources, Shanghai, China

3BV.1.55 Multijunction Solar Cell Electroluminescence: Method for Subcells IV-Curve Obtaining
M.A. Mintairov, V.V. Evstropov, S.A. Mintairov,
M.Z. Shvarts & N.A. Kalyuzhnny
RAS / Ioffe, St. Petersburg, Russia

3BV.1.56 Ultrafast Carrier Dynamics of Coupling Effects in InGaP/InGaAs/Ge Multi-Junction Solar Cells
V. Paraskeva, M. Hadjipanayi, A. Othonos & G.E. Georghiou
University of Cyprus, Nicosia, Cyprus

3BV.1.57 New Results on SiGeSn MOVPE Grown for Multi-Junction Solar Cells
G. Timò, G. Abagnale, M. Calicchio, M. Cornelli, N. Armani,
F. Trespidi, E. Malvisi & E. Achilli
RSE, Piacenza, Italy
F. Annoni
IMEM-CNR, Parma, Italy
B. Schineller
AIXTRON, Herzogenrath, Germany
R. Couderc
CEA-INES, Le Bourget du Lac, France
G. Siefer
Fraunhofer ISE, Freiburg, Germany
E. Achilli
University of Pavia, Italy

3BV.1.60 Influence of Temperature on Evolution of Properties of Ammonia-Free Chemical Bath Deposited CdS Thin Films
I. Gupta & B.C. Mohanty
Thapar University, Patiala, India

3BV.1.61 A Facile Route for Synthesis of Copper Iron Tin Sulfide Thin Films
A. El Kissani, D. Ait Elhaj, F. Welatta, H. Ait Dads, L. Nkhaili,
K. El Assali & A. Outzourhit
Cadi Ayyad University, Marrakech, Morocco

3BV.1.62 High Fill Factor CIGS Solar Modules by Evaporated Metal Grid: Numerical Simulation and Module Analysis
S. Lin & H. Shan
NICE, Beijing, China
D. Zhuang
Tsinghua University, Beijing, China
R. Wächter, T. Repmann, T. Freund & N. Zancan
NICE Solar Energy, Schwäbisch Hall, Germany

3BV.1.63 Bifacial and Flexible CIGS Solar Cell by Mechanical Lift-Off Process
T. Masuda & N. Hamada
Toyota, Susono, Japan
M. Inoue, J. Chantana, T. Nishimura & T. Minemoto
Ritsumeikan University, Shiga, Japan

3BV.1.64 Alternative Buffer Layer for Reducing Optical Losses in Cu(In,Ga)(Se,S)2 Solar Cells
Showa Shell Sekiyu, Atsugi, Japan
3BV.2.8 Fabrication of Smooth, Mirror-Like and PbI2-Free Thin Film Perovskite Layers in Ambient Conditions
- C. Montes, L. Ocaña, L. De Sousa-Vieira,
- J.S. Moreno-Ramírez, M. Friend & M. Cendagorta
- ITER, Granadilla de Abona, Spain
- S. González-Pérez & B. González-Diaz & C. Hernandez-Rodriguez
- ULL, La Laguna, Spain

3BV.2.9 Layer Structure and Pseudo-Halide Perovskite Solar Cells
- National Cheng Kung University, Tainan, Taiwan

3BV.2.10 On the Stability of Planar CH3NH3PbI3 Perovskite Solar Cells Produced on under Ambient Conditions by Using Polymer Encapsulates
- L. Ocaña, C. Montes, L. De Sousa-Vieira, M. Friend & M. Cendagorta
- ITER, Granadilla de Abona, Spain
- B. González-Diaz, R. Guerrero-Lemus & C. Hernandez-Rodriguez
- ULL, La Laguna, Spain

3BV.2.11 Synthesis and Thermal Stability Analysis of Lead-Free Cs2AgBiBr6 Double Perovskites
- T. Burwig, K. Heinze & R. Scheer
- Martin Luther University, Halle (Saale), Germany
- V. Izquierdo-Roca, M. Guc & P. Pistor
- IREC, Sant Adrià de Besòs, Spain

3BV.2.12 2D Modeling of MAPbI3-Based Perovskite Solar Cell with Textured Surface
- J.-Y. Huang, E.-W. Chang & Y.-R. Wu
- NTU, Taipei, Taiwan

3BV.2.13 Inorganic-Organic Hybrid Perovskite Solar Cells Using Spinel Cobaltites Based Hole Transport Layers
- J. Ge, R. Scheer & Y. Zhang
- Martin Luther University, Halle (Saale), Germany

3BV.2.14 Low Temperature Wet Processing of SnO2: High Efficiency Device, Thermal Stability and Scalability Considerations
- R. Couderc, C. Roux, M. Manceau & S. Berson
- CEA, Le Bourget du Lac, France

3BV.2.15 Comparison Study of Optical, Structural and Morphological Properties of CsPbBr3 Thin Films Grown Using Different Vacuum Based Routes
- G. Gordillo, C.A. Otálora, E.A. Ramírez Pérez & O.G. Torres
- National University of Colombia, Bogotá, Colombia

3BV.2.16 Studying the Use of Mixed Binders Made with Epoxy Resin and Collodion for Producing Conductive Inks for the Metalization of Perovskite Solar Cells via Screen Printing Techniques
- C. Montes, L. Ocaña, L. De Sousa-Vieira, M. Friend & M. Cendagorta
- ITER, Granadilla de Abona, Spain
- S. González-Pérez & B. González-Diaz
- ULL, La Laguna, Spain

3BV.2.17 Wet (CBD, Spin-Coating) and Dry (ALD, CVD) Deposition of Tunable Metal Hybrid Perovskites MASnxPb1-x(IxBr1-x)3 and Oxides for Tandem Application
- M. Kozolinsky, T. Hildebrandt & F. Donsanti
- EMPA, Dubendorf, Switzerland
- D. Martineau & T. Meyer
- Solaronix, Aubonne, Switzerland

3BV.2.18 Efficient and Stable Fully Slot Die Coated Perovskite Solar Cell
- A. Verma, J. Heier, R. Schneider & F. Nüesch
- EMPA, Dubendorf, Switzerland
- D. Martineau & T. Meyer
- Solaronix, Aubonne, Switzerland

3BV.2.19 Tailoring the 2D/3D Structure of Perovskite Film for Its Integration on Highly Textured c-Si Bottom Cell
- F. Hilt & E. Drahi
- TOTAL, Paris la Défense, France
- C. Aider
- IPVF, Palaiseau, France
- J. Rousseau
- EDF R&D, Palaiseau, France

3BV.2.20 Optical Perovskite Test for Optimisation of Perovskite Solar Module Encapsulation Procedures
- E.P. Booker, M. Majorel, M. Matheron, N. Nguyen, S. Cros & S. Berson
- CEA, Le Bourget du Lac, France
- J.B. Boutin
- Arkema, Pierre-Benite, France

3BV.2.21 PZN-4.5pt Perovskites Nanoparticles Thin Films for High Light Absorption and Ferrophotovoltaics Application
- R. Ndioukane, N.C.Y. Fall, M. Touré & D. Kobor
- Assane Seck University, Ziguinchor, Senegal
- L. Lebrun
- INSA, Lyon, France
3BV.2.25 Photovoltaic Properties of PZN-4.5PT Perovskite Nanoparticles Thin Film Deposited on Silicon Nanowires Substrate
R. Ndioukane & D. Kobor
UASZ, Ziguinchor, Senegal
L. Motte & J. Solard
University of Paris 13, France

3BV.2.26 Investigation of the Reliability of the Perovskite Photovoltaic Module
Z. Tang, H. Zhang, Y. Wang, W. Guo, C. Jian, Y. Li & X. Xu
Hanergy Thin Film Power, Chengdu, China
X. Hao & J. Zhang
Sichuan University, Chengdu, China

3BV.2.27 Structural Properties of Solution Processed FAPbI3 Perovskites Combined with DFT Calculations
K. Sekar, J. J. Ríos-Ramírez & V. Subramaniam
CINVESTAV, Ciudad de Mexico, Mexico
J. Bouclé
University of Limoges, France

3BV.2.28 The Effects of Thickness and Interface of CuSCN on the Performance of Perovskite Solar Cells
H. Gao
Beijing University of Technology, China

3BV.2.29 Device Design Rules and Operation Principle of Perovskite Solar Cells for High-Power Indoor Applications
M.H. Ann, N.Y. Ha & J. Kim
Ajou University, Suwon, Republic of Korea
J. Kim
KETI, Seongnam-si, Republic of Korea
M. Kim, J. Seidel & J. S. Yun
UNSW, Sydney, Australia
N. Park
KETI, Gyeonggi-do, Republic of Korea

3BV.2.30 Effect of ZnO Seed Layer in Perovskite Solar Cell
IIT(BHU) Varanasi, India

3BV.2.35 Air-Stable Semi-Transparent Organic Solar Cells Based on Innovative Donor Polymer and Graphene Electrode
G. Bianchi, C. Carbonera, A. Cominetti, F. Ferrazza & R. Poni
Novara, Italy
M.M. Tavakoli & J. Kong
MIT, Cambridge, United States

3BV.2.36 Lifetime of Inkjet Printing OPV Modules for Indoor Applications
H. Alkhatib, M. Pasquinelli, L. Escoubas & J. J. Simon
Aix Marseille University, France
P. Pierron & S. B. Dkhil
Dracula Technologies, Valence, France

3BV.2.39 Co-Sensitization of Ruthenizer with MOF for Increasing Power Conversion Efficiency in DSSCs
M. Younas, A. Helal, A. Al-Ahmed & F.A. Al-Sulaiman
KFUPM, Dhahran, Saudi Arabia
M. Afzaal
Higher Colleges of Technology, Sharjah, United Arab Emirates

3BV.2.41 Highly Efficient Halogen-Free Solvent Processed Large Area Polymer Solar Cell Module Enabled via Molecular Engineering of Copolymers
KRICT, Daejeon, Republic of Korea

3BV.2.45 CuGaSe2 / c-Si Tandem Solar Cells with an Optimized CuGaSe2 Co-Evaporation Process
A. Rivalland, L. Arzel & N. Barreau
IMN, Nantes, France
P. Bellanger & S. Dubois
CEA, Le Bourget du Lac, France

3BV.2.46 Polymer-Based Rear Side Light Trapping Structures for Silicon-Based Tandem Solar Cells
Fraunhofer ISE, Freiburg, Germany

3BV.2.47 Atomic Structure of As-Modified Si(100) Surfaces Prepared in CVD Ambience for III-V/Si Tandems
A. Paszuk, O. Supplie, M. Nandy, P. Kleinschmidt & T. Hannappel
Ilmenau University of Technology, Germany
O. Romanyuk
ASCR, Prague, Czech Republic

3BV.2.49 Building Blocks Development for Defect-Free Growth of GaAs on Silicon for Tandem Solar Cells
CNRS, Gif sur Yvette, France
C. Renard, G. Hallais, L. Vincent & D. Bouchier
CE2N, Palaiseau, France
N. Cherkashin
CEMES, Toulouse, France
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3BV.2.50</td>
<td>Towards a GaAs/AlGaAs Nanowires-on-Silicon Tandem Solar Cell</td>
<td>M. Vettori, P. Regreny &amp; M. Gendry, Ecole Centrale de Lyon, Ecully, France</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X. Li, C. Chevalier, M. Lemiti &amp; A. Fave, INSA Lyon, Villeurbanne, France</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V. Piazza, A. Cattoni, A. Scaccabarozzi, G. Patriarche &amp; M. Tchernycheva, CNRS, Palaiseau, France</td>
</tr>
<tr>
<td>3BV.2.51</td>
<td>Composite-Cell Current Matching for Higher Efficiency Tandem Solar Cells</td>
<td>R. Garrison &amp; R.N. Kleiman, McMaster University, Hamilton, Canada</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D. Coutancier &amp; S. Collin, CNRS, Palaiseau, France</td>
</tr>
<tr>
<td>3BV.2.54</td>
<td>Monolithic Perovskite/Silicon Tandem Solar Cells with Nanocrystalline Silicon Oxide Recombination Junction</td>
<td>E. Lamanna, E. Calabrò, F. Matteocci &amp; A. Di Carlo, University of Rome II, Italy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M.L. Addonizio, E. Bobeico, M. Della Noce, V. La Ferrara, A. De Maria, G. Rametta, L. Lancellotti, L.V. Mercaldo, I. Usati &amp; P. Delli Veneri, ENEA, Portici, Italy</td>
</tr>
<tr>
<td>3BV.2.55</td>
<td>Low Temperature Activation of B Implantation for Si Subcell Fabrication in III-V/Si Tandem Solar Cells</td>
<td>Y.-T. Sun, M.C. Chen, G. Omanakuttan, A. Strömberg &amp; S. Lourudoss, KTH Royal Institute of Technology, Kista, Sweden</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R. Hansson &amp; M. Rinio, Karlstad University, Sweden</td>
</tr>
<tr>
<td>3BV.2.56</td>
<td>Fabrication Procedure of c-Si Tunnel Junction for Tandem Photovoltaic Cells</td>
<td>X. Li, A. Fave &amp; M. Lemiti, INSA Lyon, Villeurbanne, France</td>
</tr>
<tr>
<td>3BV.2.57</td>
<td>CIGS Growth on a III-V/Si(001) Platform: Towards CIGS/Si Tandem Solar Cells</td>
<td>O. Durand, A. Létoublon, C. Cornet &amp; A. Zhou, INSA-Rennes, France</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N. Barreau &amp; E. Gautron, University of Nantes, France</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M. Balestrieri, D. Coutancier &amp; D. Lincot, CNRS, Palaiseau, France</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. Ben Slimane &amp; S. Béchu, IPVF, Palaiseau, France</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. Bidaud &amp; S. Collin, CNRS, Orsay, France</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M. Feifel &amp; F. Dimroth, Fraunhofer ISE, Freiburg, Germany</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M. Bouttemy, A. Etcheberry, M.A. Pinault-Thuery &amp; F. Jonard, UVSQ, Versailles, France</td>
</tr>
<tr>
<td>3BV.2.58</td>
<td>Time-Response Analysis of Perovskite/Silicon Tandem Solar Cells</td>
<td>V. Paraskeva, M. Hadjipanayi &amp; G.E. Georgiou, University of Cyprus, Nicosia, Cyprus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A.W.Y. Ho-Baille, N.J. Ekins-Daukes &amp; J. Zheng, UNSW Australia, Sydney, Australia</td>
</tr>
<tr>
<td>3BV.2.59</td>
<td>Optimization of the Transparent Conductive Adhesive Layer for Two Terminal Multijunction Solar Cells</td>
<td>C. Li, P. Zhang, Z. Liu, X. Hao &amp; M.A. Green, UNSW Australia, Sydney, Australia</td>
</tr>
<tr>
<td>3BV.2.60</td>
<td>Designing Carrier Selective Perovskite on Silicon 3T Tandems</td>
<td>J.P. Connolly, J.P. Kleider, M.E. Gueunier-Farret, Z. Djebbour, J. Alvarez &amp; D. Mencaraglia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CNRS, Gif sur Yvette, France</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M.K. Nazeeruddin, EPFL, Lausanne, Switzerland</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V.D. Mihailetchi, ISC Konstanz, Germany</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P. Baranek, EDF R&amp;D - IPVF, Palaiseau, France</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P. Schulz, CNRS, Palaiseau, France</td>
</tr>
<tr>
<td>3BV.2.61</td>
<td>Monolithic CZTS/Si Tandem Cells with MoS2/TCOs Intermediate Contact</td>
<td>C. Malerba, M. Valentini, M. Izzi, L. Serenelli, E. Salza, M. Tucci &amp; A. Mittiga, ENEA, Rome, Italy</td>
</tr>
</tbody>
</table>
VISUAL PRESENTATIONS 1BV.3

15:15 - 16:45  Fundamental Studies / New Materials and Concepts for Cells and Modules

Chairpersons:
Antonio Martí Vega
UPM, Spain
Jean-Francois Guillemoles
CNRS, France

1BV.3.1  Analysis for Efficiency Potential of Perovskite Solar Cells and Perovskite/Si Tandem Solar Cells
M. Yamaguchi, K.-H. Lee, Y.-C. Wang, K. Araki & N. Kojima
Toyota Technological Institute, Nagoya, Japan

1BV.3.2  Hot Carrier Approach to the Efficiency of a Solar Cell
S. Ašmontas, J. Gradasaukas, A. Sužiedelis, A. Šilienas, E. Širmulis, V. Vaicikauska, V. Švedas & O. Žalys
CPST, Vilnius, Lithuania

1BV.3.4  Comparison among Models for Lambertian Light Trapping in Textured Si Solar Cells
L. Abenante
ENEA, Rome, Italy

1BV.3.5  Internal Rear Reflectance at Lambertian Light Trapping in Textured Si Solar Cells
L. Abenante
ENEA, Rome, Italy

1BV.3.7  Improved Efficiency of Organic Solar Cells by Embedded Colloidal Crystals and Nano-Texturing Surfaces
Pontifical Xaverian University, Bogotá, Colombia

1BV.3.8  Absorption of Light by a Particulate Monolayer: Effect of Ordering, Concentration, and Size of c-Si Particles
V.A. Loiko, A.A. Miskevich & N.A. Loiko
NASB, Minsk, Belarus

1BV.3.9  Synthesis of CuO Nanowires with Controlled Density
L. Nkhaili, A. Narjis, A. El Kissani, A. Agedad & A. Outzourhit
Cadi Ayyad University, Marrakech, Morocco

1BV.3.10  Towards a Low-Cost High-Power LED Array for Solar Cells Characterization
M.M. Hassan, S.O. Abdellatif & H.A. Ghali
The British University in Egypt, Cairo, Egypt

1BV.3.11  Study of an Acquisition Chain for the Thermal Characterisation of Thin Film – An Inverse Method to Estimate Material Parameters
S. Peillon, C. Rodet & Y. Cuminal
IES / EPF, Montpellier, France

1BV.3.12  Analytical Framework for the Assessment and Modelling of Single- and Multi-Junction Solar Cells
C.S. Schuster
University of York, United Kingdom

1BV.3.13  Functionalized Graphene Quantum Dots Embedded Polymer: Photon Downshifter for CIGS Photovoltaics
F. Khan & A. Al-Ahmed
KFUPM, Dhahran, Saudi Arabia
J.H. Kim
DGIST, Daegu, Republic of Korea

1BV.3.14  Research on Flexible GainP/GainAs/Ge/Bi2Te3/Sb2Te3 PV-TE Integrated Systems
P. Gao, H. Wang, Q.-M. Zhang, C. Xue & Q. Sun
Tianjin Institute of Power Sources, China
C.-Y. Hou
Donghua University, Shanghai, China

1BV.3.20  Photocurrent Measurements and Deep Level Transient Spectroscopy on In2S3:V Intermediate Band Solar Cells
T.J. Jawinski, R. Pickenhain, M. Grundmann & H. von Wenckstern
University of Leipzig, Germany
L.A. Wägele & R. Scheer
Martin Luther University, Halle (Saale), Germany

1BV.3.22  Strained Quantum Well Superlattice Solar Cells
S.M. Hubbard, M. Kacharia & S.J. Polly
Rochester Institute of Technology, United States
R. Welser & A. K. Sood
Magnolia Optical Technologies, Woburn, United States

1BV.3.23  Oxide Solar Cell Devices Based Cu2O/ZnO Deposited via Open Air Spatial Atomic Layer Deposition towards Building Integrated Photovoltaic Application
Grenoble INP, France

1BV.3.25  Increasing Photovoltaic Module Sustainability through UV-Curable Self-Healing Polymer Layers
D. Ehrhardt, B. Van Mele & N. Van den Brande
VUB, Brussels, Belgium
K. Van Durme & J.J. Jansen
DSM, Geleen, The Netherlands
1BV.3.28 Copper Doped TiO2 Nano Crystallites for Dye-Sensitized Solar Cell (DSSC) Applications
S. Chahid, R. Alcántara & D.M. de los Santos
UCA, Puerto Real, Spain

1BV.3.30 Pseudo-Phase Transition Behavior in CuSbS2 Thin Films by S Flux
A. Cho, S. Banu, Y. Cho, S.J. Ahn, J.H. Yun, J. Gwak,
S.K. Ahn, Y.J. Eo, J.S. Cho, J.H. Park, J.S. Yoo, K. Kim,
D.H. Shin & I. Jeong
KIER, Daejeon, Republic of Korea

1BV.3.32 SnS Thin Films Grown by Successive Layer Adsorption and Reaction Method at Room Temperature
M. Mathew
St. Joseph's College, Kozhikode, India

1BV.3.33 Light Trapping in Commercial Silicon Solar Cell Structures Using Silver Nano Particles
M. Mathew
St. Joseph's College, Kozhikode, India

1BV.3.35 Reaching Entire Solar Spectrum Absorption through Micro-Textured Metal Thin Film Induced Strong Localized Surface Plasmon Resonance
H.-J. Syu, H.-C. Chuang, M.-J. Lin & C.-F. Lin
NTU, Taipei, Taiwan

1BV.3.36 Antimony Selenide Based Solar Cells by Vacuum Evaporation
V. Kumar, E. Artigiani & A. Romeo
University of Verona, Italy

1BV.3.37 Fabrication of Uniform Silicon Nanowires Array via Chemical Controlled Silica Template for Enhancing Light Trapping Properties
S. Khanna, S. Paneliya, V. Bhavsar, P. Marathey,
R. Banerjee & I. Mukhopadhyay
PDP University, Gandhinagar, India
D. Roy
DRDO, Kanpur, India

1BV.3.38 Investigation of Al2O3 –SiO2 Antireflection Coatings for Silicon Solar Cells
V.F. Gremenok
NASB, Minsk, Belarus
V.V. Khoroshko
BSUIR, Minsk, Belarus
S.X. Suleymanov, V.G. Dyskin, M.U. Djanikh, N.A. Kulagina & O.A. Dudko
Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
A.N. Pyatjitski, V.A. Saladukha & T.V. Piatitskaya
JSC “INTEGRAL”, Minsk, Belarus

1BV.3.39 Upconversion Nanophosphors (Er:Yb:Y8V2O17 and Y2Te4O11) for Solar Cell
A.K. Dikshit, A. Singh & P. Chakrabarti
IIT, Varanasi, India
Y. Dwivedi
Kurukshetra University, India
N. Mukherjee
IIEST Shibpur, Howrah, India

1BV.3.41 Electrodeposited Cuprous Oxide Based Thin Film Heterojunction Solar Cells
P. Marathey, B. Patel, S. Khanna, I. Mukhopadhyay & A. Ray
PDP University, Gandhinagar, India

1BV.3.42 Nanocomposite Solar Cells Based on Organic/Inorganic Heterojunction Clonidine/Si
S.V. Mamkin, A.V. Korovin, N.V. Kotova, T.R. Barlas,
O.S. Kondratenko, I.B. Mamontova, V.R. Romanyuk,
P.S. Smertenko & N.M. Roshchina
NAS ISP, Kyiv, Ukraine

1BV.3.44 Texture and Bandgap Tuning of Phase Pure Cu2O Thin Films Grown by a Simple Potentiostatic Electrodeposition Technique
S.F.U. Farhad, M.M. Hossain & N.I. Tanvir
BCSIR Labs, Dhaka, Bangladesh

1BV.3.45 Structural Study of Nickel Silicide Formation Using Ni/a-Si/c-Si and a-Si/Ni/a-Si/c-Si Multilayers Prepared by RF Sputtering for Photovoltaic Application
A. Agdag, A.-I. El Khalifi, A. Tchenka, M. Azizan,
E.M. Ech-Chamikh & Y. Ijdiyaou
Cadi Ayyad University, Marrakech, Morocco

1BV.3.46 Synthesis and Characterization of Cu2NiSnS4 Thin Films Solar Cells via Sol-Gel Method
D. Ait El Haj, A. El Kissani, H. Chaib & A. Outzourhiti
Cadi Ayyad University, Marrakech, Morocco

1BV.3.47 Front Interface Modification for Efficient Sb2Se3 Thin-Film Solar Cells
K. Shen, C. Ou & Y. Mai
Jinan University, Guangzhou, China
Z. Li
Hebei University, Baoding, China

1BV.3.48 Modelling Acceptor Composition Dependent Voc in Ternary Organic Solar Cells
A. Singareddy & P.R. Nair
IIT Bombay, Mumbai, India
1BV.3.49 Designing a Wet Solar Cell Composed of Titanium Dioxide Anode and Copper Oxides Cathode
H. Nay Wunn, S. Motoda & M. Morita
Kaiyodai, Tokyo, Japan

1BV.3.50 Experimental Results of Testing Different PV Receivers for Laser Wireless Energy Transfer System for UAV
V. Kapranov, D. Ovchinnikov, V. Tugaenko & A. Razuvaev
powerin.space, Moscow, Russia

1BV.3.51 Multifunctional Coated Composite Material for Encapsulation of Photovoltaic Devices
N. Yurrita, J. Aizpurua, J. Machado, W. Cambarau & F.J. Cano
Tecnalia, San Sebastian, Spain

VISUAL PRESENTATIONS 6BV.4
17:00 - 18:30 PV on/in Buildings, Infrastructure, Landscape, Water and Nature / Professional Applications of PV

Chairpersons:
Alessandra Scognamiglio
ENEA, Italy

Urs Muntwyler
BUAS, Switzerland

6BV.4.2 CONIPHER: Performance Analysis of an Innovative Facade Solution for Renovation Market Photovoltaic Integration Enhancement
Y.B. Assoa, P. Thony & P. Messaoudi
CEA, Le Bourget du Lac, France
E. Schmitt
Vicat, L’Isle-d’Abeau, France
O. Bizzini
ARaymond, Saint-Egrève, France

6BV.4.3 Transformative Techniques for Photovoltaic Integration in Building Roofs and Facades
CSEM, Neuchâtel, Switzerland

6BV.4.4 The Key to a Sustainable Building Façade: Demonstration and Results
Q. van Nieuwenhoven & S. Scheerlinck
Laborelec, Linkebeek, Belgium
S.C. Veenstra
ECN part of TNO, Eindhoven, The Netherlands
T. Aermouts
imec, Leuven, Belgium

6BV.4.5 Classification of Building Parts in Real City Point Clouds
S. Schiffl, G. Behrens & F. Fehring
University of Applied Sciences Bielefeld, Minden, Germany

6BV.4.6 Performance Assessment of BIPV Systems: From Current Normative Framework to Next Developments
P. Bonomo, F. Parolini, F. Frontini, E. Saretta, M. Caccivio & G. Bellenda
SUPSI, Canobbio, Switzerland
M. Machado
Tecnalia, San Sebastian, Spain
S. Boddaert
CSTB, Sophia-Antipolis, France

6BV.4.7 BIPV Round Robin Action of IEA PVPS Task 15
P. Illich
UAS Technikum Wien, Vienna, Austria
P. Gaisberger
FH-OOE, Wels, Austria
G.C. Eder
OFI, Vienna, Austria
K.A. Berger & G. Újvári
AIT, Vienna, Austria
D. Moor
Ertex Solar, Amstetten, Austria
S. Boddaert
CSTB, Sophia-Antipolis, France
R.M.E. Valckenborg & J. van den Brand
SEAC, Eindhoven, The Netherlands
P. Bonomo & C.S. Polo López
SUPSI, Canobbio, Switzerland
M. del Buono
Eurac Research, Bolzano, Italy
A.G. Imenes
University of Agder, Grimstad, Norway
N. Martín Chivelet & H. Gonzáles
CIEMAT, Madrid, Spain
A. Sanz Martinez & M. Machado
Tecnalia, San Sebastian, Spain
J.T. Kim
Kongju National University, Cheonan, Republic of Korea
A. Masolin & M. Ritzen
ZUYD, Heerlen, The Netherlands
6BV.4.8  The Relation between Partial Shadings and Irradiation Losses in BIPV Systems in Different Locations Around the World  
C.D. Zomer & R. Rüther  
UFSC, Florianópolis, Brazil

6BV.4.9  Design Applications of Bifacial c-Si PV Module for BIPV Environments  
Konkuk University, Seoul, Republic of Korea  
C.-S. Won  
Scotra, Pyeongtaek, Republic of Korea  
S.C. Woo  
Woodo Energy, Busan, Republic of Korea  
S.H. Lee  
KETEP, Seoul, Republic of Korea  
H. Jo & O. Kwon  
K-water, Daejeon, Republic of Korea

6BV.4.10  Comparison of Crystalline Silicon and CIGS BIPV in Desert Environment of Dubai, UAE  
O.M. Albadwawi, J.J. John & A. Alnuaimi  
DEWA, Dubai, United Arab Emirates

6BV.4.11  Energy Yield Analysis of a Heat Pipe Based Photovoltaic Thermal Solar Collector for Building Integrated Applications  
M.P. Bellmann  
SINTEF, Trondheim, Norway  
S.P. Lester  
Flint Engineering, Mayfield, United Kingdom  
H. Jouhara  
Brunel University, London, United Kingdom  
R. Einhaus  
Apollon Solar, Lyon, France

6BV.4.12  Numerical Study for the PV Potential and Integration in Urban Areas  
B. Raybaud & P. Thony  
CEA, Grenoble, France  
E. Vergnault, L. Merlier & J.J. Roux  
INSA-Lyon, Villeurbanne, France

6BV.4.13  EnergyMatching Project – Adaptable and Adaptive RES Envelope Solutions to Maximize Energy Harvesting and Optimize EU Building and District Load Matching  
L. Maturi, S. Giona, D. Moser, R. Lollini & M. Lovati  
Eurac Research, Bolzano, Italy  
P. Alonso & I. Weiss  
WIP Renewable Energies, Munich, Germany  
C. Bales  
Dalarna University, Borlänge, Sweden  
J.M. Vega de Seoane  
Tecnalia, San Sebastián, Spain  
A. Becker  
Ferroamp Elektronik, Spånga, Sweden  
S. Hallbeck  
NIBE, Markaryd, Sweden  
E. Widlak  
Tulipps, Waalwijk, The Netherlands  
D.-J. Bles  
Plastica Plaat, Waalwijk, The Netherlands  
V. Zanon  
Eurofinestra, Governolo, Italy  
E. Rico  
Onyx Solar Energy, Avila, Spain  
L. Papaiz  
Pellini, Codogno, Italy  
A. Perez Carballo  
Solarwall, Madrid, Spain  
C. de Nacquard  
Bouygues, Paris, France  
O. Caboni  
R2M Solution, Pavia, Italy  
V. Esposito  
Casa, Florence, Italy  
J. Hedberg  
LudvikaHem, Sweden  
S. Metayer  
Habitat76, Rouen, France

6BV.4.14  On the Feasibility of Solar Fuelled Electric Ferries  
M. Jomâa  
SINTEF, Oslo, Norway

6BV.4.16  Design and Optimization for Seawater Desalination Plant by Reverse Osmosis, Using Photovoltaic Solar Energy  
L. Luciano de la Cruz  
National University of Engineering, Lima, Peru

6BV.4.17  Evaluation of Thermal Properties for BIPV in Façade - Experimental Results of G Value for Crystal Silicon BIPV Module According to ISO 19467  
H. Ishii  
LIXIL, Tokyo, Japan
6BV.4.18  Comparison of the Outdoor Performance of Cylindrical and Rectangular-Parallelepiped PV Modules
H. Noge & M. Konagai
Tokyo City University, Japan
T. Masuda & A. Satou
Toyota, Shizuoka, Japan

6BV.4.20  Operational Power Performance Analysis of Various BIPV Systems in Republic of Korea
H. Lee, J. Yoon, M. Choi & D. Shin
Hanbat National University, Daejeon, Republic of Korea

6BV.4.21  Steps Towards an Optimized Building-Integrated Photovoltaics Value Chain in The Netherlands
E. van der Poel, Y. Aartsma & E. Teunissen
Berenschot, Utrecht, The Netherlands
A. De Vries
Celstar, Brussels, Belgium
W.G.J.H.M. van Sark
Utrecht University, The Netherlands

6BV.4.22  Design Evaluation of Customized Building Integration Photovoltaic Prototypes in Hot Climates
D. Efurosibina Attaye, K.A. Tabet Aoul & A. Hassan
UAEU, Al Ain, United Arab Emirates

6BV.4.23  A Solar Cell with Switchable Colour
N. Neugebohm, M. Götz, K. Gehrke, M. Vehse & C. Agert
DLR, Oldenburg, Germany

6BV.4.24  Output Characteristic of Thin-Film Solar Cell Assuming Various Greenhouse Installation Forms
Y. Hirata & Y. Watanabe
Suwa University of Science, Nagano, Japan

6BV.4.25  An Easy-to-Mount BIPV Roof System
Solibro Research, Uppsala, Sweden

6BV.4.26  Direct Determination of Total Hemispherical Emittance of Perovskite and Silicon Solar Cells
L. Granados, J. Bing, S. Huang, H. Mehrvarz & A.W.Y. Ho-Baillie
UNSW, Sydney, Australia
N. Takamure & D.R. McKenzie
University of Sydney, Australia

6BV.4.27  Experimental Study on the Performance Evaluation of Building Integrated Photovoltaic (BIPV) Generated Curtain-Wall for Reliability Verification
E. Ryu, S. Lee, D. Kim, K.-J. Kim & J. Park
KCL Korea Conformity Laboratories, Chungbuk, Republic of Korea

6BV.4.28  Increasing Coverage of Heating Demand by PVs Electricity Generation through Geometrical Modification in a Medium Sized Building
A. Rahmani & R. Wagner
Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany

6BV.4.31  Design and Technoeconomic Optimization of Grid-Connected Hybrid PV-System for the Agricultural Sector
J. Fagerström, I.H. Lereng & J.H. Selj
Institute for Energy Technology, Kjeller, Norway
A.-G. Hjelkrem & A.K. Bakken
NIBIO, Ås, Norway

6BV.4.32  An Innovative PVT Hybrid Module for Positive Energy Buildings - An Example of Implementation in France
L. Brottier & J.-M. Drap
DualSun, Marseille, France
R. Bennacer
LMT/ENS, Cachan, France

6BV.4.33  Solar Streetlights Using Vertical Bifacial Solar Modules: A Case Study for India
E. Gerritsen
CEA, Le Bourget du Lac, France

6BV.4.35  Wind-Solar Hybrid Systems May Raise Project IRR by up to 10%
S. Dayal
Sunil Dayal, Delhi, India

6BV.4.36  Extended Battery Life in Wearable Device Using Quantum Dot Embedded Flexible Photovoltaic Harvester and Low Power Conversion System
C. Lee, Y. Park, Y. Ryu & S. Yeo
Samsung Electronics, Seoul, Republic of Korea

NOTES
Wednesday, 11 September 2019

VISUAL PRESENTATIONS 6CV.1

08:30 - 10:00  PV Driven Energy Management and System

Chairpersons:
Franz Baumgartner  
ZHAW, Switzerland
Ingrid Weiss  
WIP Renewable Energies, Germany

6CV.1.1  Power Flow Monitoring at Substations of Low Voltage Distribution Grids with High Penetration of PV Installation  
H. Behrends, R. Völker & S. Geißendörfer  
DLR, Oldenburg, Germany
T. Kumm  
EWE, Oldenburg, Germany

6CV.1.2  Development of Advanced Control Using Forecast Data for PV-Diesel Hybrid Systems on a Simulation Platform  
A. Wantier & T.-P. Do  
CEA, Le Bourget du Lac, France
C. Grellier & J. Colas  
CVE, Marseille, France

6CV.1.4  Energy Management for Energy Community Sharing Based on Particle Swarm Optimization and Alternating Direct Method of Multiplier (ADMM)  
M.A. Albachrony, D.L. Ha, Q.T. Tran & A. Brun  
CEA, Le Bourget du Lac, France
M. Petit  
Supelec, Gif-sur-Yvette, France

6CV.1.5  Incentive-Based Solutions for High Photovoltaic Penetration in Distribution Grid  
L. Bloch, J. Holweger, C. Ballif & N. Wyrsch  
EPFL, Neuchâtel, Switzerland

6CV.1.6  Photovoltaic Energy Yield Prediction Using an Irradiance Forecast Model Based on Machine Learning  
S. Wendlandt  
PI Berlin, Germany
F. Popescu  
Fraunhofer FOKUS, Berlin, Germany

6CV.1.7  Day-Ahead Scheduling of Household Electricity Consumption Based on a Genetic Algorithm  
C. Lucas, M. Guemri & Q.T. Tran  
CEA, Le Bourget du Lac, France

6CV.1.8  Spatio-Temporal Forecasting of PV Power Generation for High Integration in the Grid  
M. Malvoni & N. Hatzigiorgiou  
ICCS/NTUA, Zografou, Greece

6CV.1.9  A Systematic Approach to Development of a Sustainable Monitoring and Evaluation Framework for PV Hybrid Mini-Grids  
B. Ravanbach, M. Kühnel, B. Hanke, K. von Maydell & C. Agert  
DLR, Oldenburg, Germany
O. Weigel & S. Mæbe  
GiZ, Hamburg, Germany
A. McMaster  
DEDEAT, East London, South Africa

6CV.1.11  A Solar PV/T Living Laboratory as a Cyber-Physical System  
A. Rachid  
UPJ V, Amiens, France

6CV.1.12  Fuel Consumption Decrease in Hybrid-Power Systems Using PV Power Monitoring and Forecast Solution  
L.-E. Boudreault, E. Buessler, O. Liandrat & S. Cros  
Reuniwatt, Sainte-Clotilde, France

6CV.1.13  Simulation of Multi-Agent Systems Coordination for Load Management in MicroGrid  
M. Ait Benali & A. Outzourhit  
Cadi Ayyad University, Marrakech, Morocco

6CV.1.14  Complementarity of Renewable Energy for Rural Zones, Study Case Cundinamarca-Colombia  
A. Aldana-Urrea, D.J. Rodriguez & J.A. Hernández  
District University of Bogotá, Colombia

6CV.1.15  Prototype of Electric Car for Physically Disabled People Integrated with Residential Solar Power System in Sao Paulo, Brazil  
S. Shimura & D. Deotti  
IFSP, São Paulo, Brazil
R. de Paula Diver  
UNICAMP, Campinas, Brazil
J.O. Motta Pompeu e Silva  
UFRJ, Rio de Janeiro, Brazil

6CV.1.16  A Framework on Spatiotemporal Shifting of Solar Energy Based on EV Aggregator  
K. Kato, D. Watari, I. Taniguchi & T. Onoye  
University of Osaka, Suita, Japan
6CV.1.17 Load Management Strategies for Weak Grids with High Penetration of Electric Vehicles
P. Klement, J. Helms, B. Hanke & K. von Maydell
DLR, Oldenburg, Germany

6CV.1.18 Modelling the PV Opportunities to Power E-Mobility
H. Ossenbrink
Band Gap, Bad Feilnbach, Germany

6CV.1.19 Preparing the Massive Introduction of Intermittent Energies and Electric Vehicles in Insular Territories: First Steps in Martinique and in Malta
A. Guérin de Montgareuil
CEA, St-Paul-lez-Durance, France
B. Azzopardi
MCAST Energy, Paola, Malta
L. Bellemare
AME, Ducos, Martinique

6CV.1.20 Preliminary Weather Forecast Tracking and Modelling of Electromobility
J. Ascencio-Vásquez & M. Topič
University of Ljubljana, Slovenia

6CV.1.21 Artificial Neural Network Based Decision Support System for the Present Power Grid Accounting for the Successful Integration of Renewable Energy Sources such as PV Systems
M. Linke, T. Meßmer, G. Micard, A. Wenzel & G. Schubert
University of Applied Sciences, Constance, Germany
M. Kindl
Smart Infrastructure, Stuttgart, Germany
A. Minde
ISC Konstanz, Constance, Germany

NOTES

VISUAL PRESENTATIONS 2CV.2

12:45 - 15:00 Feedstock, Crystallisation, Wafering, Defect Engineering / Thin Film and Foil-Based Si Solar Cells / Characterisation & Simulation of Si Cells

Chairpersons:
Stephan Riepe
Fraunhofer ISE, Germany
Marco Topič
University of Ljubljana, Slovenia
Stefan Peters
Hanwha Q CELLS, Germany
Francesca Ferrazza
eni, Italy
Timothy Bruton
Progress in Photovoltaics, United Kingdom

2CV.2.2 Key Structures in Silicon Heterojunction Solar Cells for the Complete Regeneration of BO-Related Defects in n-Type Upgraded Metallurgical-Grade Czochralski Silicon
C. Sun, R. Basnet, S.P. Phang & D. Macdonald
ANU, Canberra, Australia
W. Weigand, Z. Yu & Z.C. Holman
Arizona State University, Tempe, United States
D. Chen & B. Hallam
UNSW Australia, Sydney, Australia

2CV.2.3 Bulk Degradation of n-Type Czochralski-Grown Upgraded Metallurgical-Grade Silicon Wafers during the Processing of Phosphorus-Doped Poly-Silicon Cells
ANU, Canberra, Australia
F.E. Rougieux
UNSW Australia, Sydney, Australia

2CV.2.4 Degradation and Regeneration of n+ Poly-Si on Oxide Surface Passivation under Illumination and Dark Annealing on p-Type Cz-Si
M. Winter, S. Bordihn, R. Peibst & J. Schmidt
ISFH, Emmerthal, Germany

2CV.2.5 Light and Elevated Temperature Induced Degradation in p- and n-Type Mono-Like Silicon and Float Zone Silicon Materials and Their Correlation with Silicon Nitride Film Properties
D. Kang, H.C. Sio & D. Macdonald
ANU, Canberra, Australia
X. Zhang, T. Zhang & H. Jin
Jinko Solar, Haining, China
2CV.2.6 LeTID Studied by Hyperspectral Photoluminescence Imaging
T. Mehl, J.-F.-B. Cappelen, I. Burud & E. Olsen
NMBU, Ås, Norway
R. Søndenå
Institute for Energy Technology, Kjeller, Norway

2CV.2.7 Trapping in Multi-Crystalline Silicon Wafers: Capture Cross Section and Impact of Laser Treatment and Firing
S. Jafari, Y. Zhu, F. Rougieux & Z. Hameiri
UNSW Australia, Sydney, Australia

2CV.2.8 Influence of Deep Level Defects on Photoelectrical Processes in p-n Junction Solar Cells with Porous Silicon Antireflection Coating
V. Tregulov, V. Litvinov, A. Ermachikhin & A. Maslov
RSREU, Ryazan, Russia

2CV.2.9 Investigations of Grain Boundary Defects and Precipitates in Multi-Crystalline Silicon Wafers with EBSD, TEM, and Hyperspectral Photoluminescence Imaging
A. Thøgersen & I.T. Jensen
SINTEF, Oslo, Norway
T. Mehl, I. Burud & E. Olsen
NMBU, Ås, Norway
J. Zhu, S.E. Foss & R. Søndenå
IFE, Kjeller, Norway

2CV.2.11 Investigation of the Influence of Solar Cell Processing on Structural Defects in HPMC-Si Wafers by Photoluminescence Image Analysis
H. Haug, M. Syre Wiig & C.R. Søndenå
Institute for Energy Technology, Kjeller, Norway

2CV.2.12 Investigation of Spectral Dependence of Efficiency and Deep-Level Defects in Active Layers of Multicrystalline Silicon Solar Cells
RSREU, Ryazan, Russia

2CV.2.13 Control of Oxygen Concentration at the Top- and End-Position of Ingot to Improve Efficiency of Commercial p-Type PERC
W. Nam, J.C. Park & B. Lee
Woongjin Energy, Daejeon, Republic of Korea

2CV.2.14 Mathematical Modeling of Electromagnetic Stirring of Silicon Melt under the Conditions of a Travelling Magnetic Field
S.M. Karabanov, D.V. Suvorov, D.Y. Tarabrin & E.V. Slivkin
RSREU, Ryazan, Russia
A.S. Karabanov & O.A. Belyakov
Helios-Resource, Saransk, Russia

2CV.2.15 Generation and Propagation of Dislocation Clusters Originated from Multicrystallization by S.3n Rotation and in Quasi-Monocrystalline Silicon
T. Kojima, K. Tajima, T. Matsumoto, H. Kudo & N. Usami
Nagoya University, Japan
P. Krenckel & S. Riepe
Fraunhofer ISE, Freiburg, Germany

2CV.2.16 Further Tests of Methods to Reduce the Red Zone in the Top Region of MC - Silicon Ingots
T. Bähr & M. Ghosh
Access, Aachen, Germany
C. Kranert
Fraunhofer THM, Freiberg, Germany
C. Reimann
Fraunhofer IISB, Erlangen, Germany
C. Morche
ALD Vacuum Technologies, Hanau, Germany

2CV.2.17 Evaluation of Improvement Strategies of Grain Structure Properties in High Performance Multi-Crystalline Silicon Ingots
M. Trempa, C. Reimann & J. Friedrich
Fraunhofer IISB, Erlangen, Germany
C. Kranert & I. Kupka
Fraunhofer THM, Freiberg, Germany

2CV.2.18 The Development of 3D Visualization of Ingot Structure Based on Digital Processing of Photoluminescent Wafer Images of Multicrystalline Silicon
S.M. Karabanov, A.E. Serebryakov & D.V. Suvorov
RSREU, Ryazan, Russia
O.A. Belyakov & A.S. Karabanov
Helios-Resource, Saransk, Russia

2CV.2.19 Reduced Oxygen Contamination in Directionally Solidified Multi-Crystalline Silicon Ingots by Adjusted Silicon Nitride Coating
S. Schwanke, M. Trempa, C. Reimann & J. Friedrich
Fraunhofer IISB, Erlangen, Germany
M. Kuczynski, G. Schroll & J. Sans
AlzChem, Trostberg, Germany
2CV.2.20 Cost Effective Growth of Silicon Mono Ingots by the Application of Active Crystal Cooling in Combination with Large Melt Volumes in Cz-Puller
F. Mosel, A.V. Denisov, B. Klipp & N. Sennova
PVA Crystal Growing Systems, Wettenberg, Germany
R. Kunert & P. Dold
Fraunhofer CSP, Halle (Saale), Germany

2CV.2.21 Mono-Like Silicon Ingot Casting Based on Simulation Result in Electron-Beam Melting System
KIER, Daejeon, Republic of Korea

2CV.2.22 An Approach for Implementing Machine Learning in the Solar Industry
A. Schlezinger
Applied Materials, Santa Clara, United States

2CV.2.23 On the Mechanical Strength of Diamond-Sawn Monocrystalline, Multicrystalline and Quasi-Monocrystalline Silicon Wafers: Influence of Thickness and Saw Mark Orientation
L. Carton, R. Riva, F. Coustier & A. Chabli
CEA-LITEN, Le Bourget du Lac, France
D. Nelias & M. Fourmeau
INSA Lyon, Villeurbanne, France

2CV.2.24 Variation of Silicon Wafer Strength and Edge Chipping Induced by Residual Stresses at the Brick Bonding Interface
R. Koepge, F. Kaule, F. Herbst, A. Langhans & S. Meyer
Fraunhofer CSP, Halle (Saale), Germany
E. Velispahe
Jowat, Detmold, Germany

2CV.2.31 Adoption of Wide-Bandgap Microcrystalline Silicon Oxide and Dual Buffers for Semitransparent Solar Cells in Building-Integrated Photovoltaic Window System
J. Yang & J.-D. Kwon
KIMS, Changwon, Republic of Korea
D.-W. Kang
Chung-Ang University, Seoul, Republic of Korea
M. Shin
Korea Aerospace University, Goyang, Republic of Korea

2CV.2.32 Power Increase of Transparent a-Si:H Solar Cells Using Albedo Effects
J.W. Lim, M.A. Park & K. Kim
ETRI, Daejeon, Republic of Korea

2CV.2.33 Analysis of the Bowing Phenomenon Using 100um Scale Partially Processed c-Si Solar Cells
KIER, Daejeon, Republic of Korea

2CV.2.38 Performance Characterization for Bifacial Photovoltaic Modules
CAS, Beijing, China

2CV.2.42 Investigation of the Accelerated Light Soaking Testing for p-Type PERC Cell with and without Laser LIR Technology
C.-W. Kuo, T.-M. Kuan, W.-L. Chueh, Y.-H. Chao,
L.-G. Wu & C.-Y. Yu
TSEC, Hsinchu, Taiwan
Y.-C. Lee, M.-A. Tsai & H.-H. Hsieh
ITRI, Hsinchu, Taiwan

2CV.2.43 Analysis of Degradation in Metallization Process with E-Beam Evaporation in High-Efficiency n-Type Silicon Solar Cells
Korea University, Seoul, Republic of Korea

2CV.2.44 Non-Destructive Approach for Measuring Base Resistivity of Emitter Diffused Wafers
V. Kuruganti, J. Haunschild, A. Brand, S. Al-Hajjawi & S. Rein
Fraunhofer ISE, Freiburg, Germany

2CV.2.45 Evidence of Solute PEDOT:PSS as an Efficient Passivation Material
V.H. Nguyen, K. Gotoh, Y. Kurokawa & N. Usami
Nagoya University, Japan
S. Kato
Nagoya Institute of Technology, Koriyama, Japan

2CV.2.46 A Simulation Approach for Device Structure and Thickness Optimization of Silicon Heterojunction Solar Cells Featuring TiO2 as Carrier-Selective Contact
D.K. Gorle & N. Chander
IIT, Bhilai, India

2CV.2.47 Investigation of Deep Energy Level Spectra in Active Layer of Si Heterostructure (HIT) Solar Cell
A. Maslov, V. Litvinov, N. Vishnyakov, V. Gudzev,
A. Ermachikhin & S.P. Vakhrov
RSREU, Ryazan, Russia
2CV.2.49 Improving the Analysis of Contact Recombination by Photoluminescence Imaging
P. Manshanden
ECN part of TNO, Petten, The Netherlands

2CV.2.50 Sublayer-Resolved Structure Analysis of Passivation Layers for PERC Cells Deposited by a High-Throughput Inline PECVD Process
S. Großer, S. Richter, A. Hähnel & C. Hagendorf
Fraunhofer CSP, Halle (Saale), Germany
G. Köhler, H.-P. Sperlich, T. Große & H. Mehlich
Meyer Burger, Hohenstein-Ernstthal, Germany

2CV.2.51 Point-by-Point Parameter Mapping of a mc-Si Solar Cell
N. Kwarikunda & W. Okullo
Makerere University, Kampala, Uganda
E.E. van Dyk & F.J. Vorster
Nelson Mandela University, Port Elizabeth, South Africa

2CV.2.52 A New Measurement of Voc Temperature Coefficients at Very Large Temperature Range
M. Amara, B. Guillou Lohan & M. Lemiti
INSA Lyon, Villeurbanne, France
A. Kaminski-Cachopo
IMEP-LAHC, Grenoble, France

2CV.2.53 Effects of Si Bulk Defects Generated by SiNx:H PECVD on Light Induced Degradation
Y. Ohshita, K. Watanabe, R. Wakita, H. Lee & K. Nakamura
Toyota Technological Institute, Nagoya, Japan
T. Kamioka & A. Ogura
Meiji University, Kawasaki, Japan

2CV.2.54 FDTD Simulations of Structures Created by the Black-SiN Method to Optimize the Reflection Reduction of Solar Cells
M. John & N. Bernhard
Anhalt University of Applied Sciences, Köthen, Germany
J. Hirsch
Fraunhofer CSP, Halle (Saale), Germany

2CV.2.55 Powerful Topographic Analysis Method Using Fast Fourier Transform for c-Si Solar Cells and Emerging Technologies
K. Saliou & G. Fischer
IPVF, Palaiseau, France
F. Hilt & E. Drahi
TOTAL, Paris La Défense, France
T. Hildebrandt & P.P. Grand
EDF R&D, Palaiseau, France

2CV.2.56 Life(Time) at the Limits – Very High Lifetimes in Crystalline Silicon Measured by Photoconductance and Photoluminescence
B. Steinhauser, T. Niewelt, A. Richter, J. Polzin,
F. Feldmann, M.C. Schubert & M. Hermle
Fraunhofer ISE, Freiburg, Germany

2CV.2.57 Opto-Electronic Properties of Dislocations in Cast-Mono Silicon for Solar Cells
D. Ory, N. Paul & V. Le-Guen
EDF R&D, Palaiseau, France
T. Bidaud & S. Collin
CNRS, Palaiseau, France
L. Lombez
IPVF, Palaiseau, France

2CV.2.58 Porous Silicon Low Dielectric Constant Thin Films and Its Application in Solar Cell
K. Rahmoun
University of Tlemcen, Algeria

2CV.2.59 Accurate Performance Measurement of c-Si Solar Cells Adopting Advanced Metallization Technologies
S.K. Ahn, K. Kim, J.H. Yun, A. Cho, Y.J. Eo, J.S. Cho,
S.J. Ahn, J.H. Park, J.S. Yoo, D.H. Shin, I. Jung, S. Lee,
S. Song, A. Lee & J. Gwak
KIER, Daejeon, Republic of Korea

2CV.2.60 Comparing Near-Field Calculations and Effective Medium Models for Light Reflection and Absorption of Black Silicon Nano-Textures
T.P.N. Veeken & A. Polman
AMOLF, Amsterdam, The Netherlands
T.H. Fung & M. Abbott
UNSW Australia, Sydney, Australia
D. Payne
Macquarie University, Sydney, Australia

2CV.2.61 Impact of AlO and SiN Thickness on Field-Effect Passivation of AlO/SiN Dielectric Stacks on Crystalline Silicon
T. Mochizuki, K. Tanahashi, K. Shirasawa & H. Takato
AIST, Koriyama, Japan
A. Ito & H. Nakanishi
SCREEN, Kyoto, Japan
I. Kawayama & M. Tonouchi
Osaka University, Japan

2CV.2.62 The Development of the Probe Bar for the Newest c-Si PV Cell with the Unique Electrode Design Such as Busbar-Less, Multi Busbar and Complicated Busbar
Y. Nakamichi, H. Kojima, T. Morishima, Y. Takeda,
R. Tomioka, T. Murata & K. Iwamoto
KOPEL, Kyoto, Japan
2CV.2.63 Analysis of Laser Boron Doping and Laser Damage
N. Yang, S. Li, C. Liu, X. Yuan, X. Ye & H. Li
ECUST, Shanghai, China

2CV.2.64 Investigation of the Temperature Dependence of the Optical Properties of Silicon Nitride Anti-Reflection Coating on Silicon Photovoltaic Modules
S. Zhang, R. Bhoopathy & Z. Hameiri
UNSW Australia, Sydney, Australia
A. Gentle
University of Technology Sydney, Ultimo, Australia

2CV.2.65 Light Trapping with Free-Floating Arrays of Subwavelength Trumpet Non-Imaging Light Concentrators
A. Prajapati, A. Chauhan, D. Keizman & G. Shalev
BGU, Beer-Sheva, Israel

2CV.2.67 Key Aspects for Industrial Efficiency above 22% PERC Solar Cells Based on Double-Side AlOx Passivation
Y. Cui, S. Yuan, Y. Wang, Y. Hu, W. Zhang, X.W. Zhang, Z. Niu, S. Peng, Y. Ke, Y. Wan & Q. Huang
Risen Energy, Changzhou, China
Y. Ren & L. Zhu
Fusion New Material, Changzhou, China

2CV.2.72 Simplify Printed-ALOx PERC Cell Process: A PDA-Free Process
E-TON Solar Tech, Tainan, Taiwan
J.-Y. Hung
New E Materials, Kaohsiung, Taiwan
Z.-P. Yang
National Chiao Tung University, Tainan, Taiwan
I.-S. Yu
National Dong Hwa University, Hualien, Taiwan

2CV.2.73 The AMPERE Project Key Exploitable Result: A Bifacial Heterojunction Cell and Module Industrial Automated Manufacturing Plant in Europe
C. Colletti, C. Gerardi & D. Iuvara
ENEL Green Power, Catania, Italy
F. Bizzarri
ENEL Green Power, Rome, Italy
B. Strahm
Meyer Burger Research, Hauterive, Switzerland
A. Richter
Meyer Burger Technology, Gwatt, Switzerland
J.-F. Lerat & D. Muñoz
CEA, Le Bourget du Lac, France
M. IZZI
ENEA, Rome, Italy

J. Levrat & C. Ballif
CSEM, Neuchâtel, Switzerland
O. Nielsen
NorSun, Oslo, Norway
B. Hartlin
ERM, London, United Kingdom
B. Melzer
Jonas & Redmann, Berlin, Germany
M. Tallián
SEMILAB, Budapest, Hungary
S. Lombardo
CNR, Catania, Italy
M. Balucani
RISE Technology, Ostia, Italy
J. Rentsch
Fraunhofer ISE, Freiburg, Germany

2CV.2.75 23% Efficient Industrial Bifacial n-Type Crystalline Silicon Solar Cells with Electron-Selective Polysilicon Passivating Contacts
Z. Ma, Z. Ma, W. Gu, X. Qian, J. Sheng, C. Zhang & W. Wang
GCL System Integration Technology, Suzhou, China

2CV.2.76 Inverted Pyramid Texturing of Monocrystalline Silicon Wafer
A. Sutejo, H.P. Hsu & C.-W. Lan
NTU, Taipei, Taiwan

2CV.2.77 Influence of the Acidic Texturing Structure on the Different Surface Roughness for Solar Cell
Y. Jung, S.H. Bae, Y. Kang, H.-S. Lee & D.H. Kim
Korea University, Seoul, Republic of Korea

2CV.2.78 Simultaneous Front-Side Texturing and Rear-Side Polishing of Monocrystalline Silicon Wafer by Spray-Etching with HF-HCl-CI2 Mixtures
K. Halbfaß, B. Neubert, A. Stapf & E. Kroke
Freiberg University of Technology, Germany

2CV.2.79 Industrially MCCE Textured Cells on Monolike Substrates
Z. Xu, H. Wang, Y. Wang, F. Li, J. Shi & D. Song
Yingle Green Energy, Baoding, China

2CV.2.81 Metal Assisted Texturing on Micro Pyramids for Enhanced Anti Reflective Properties
O. Aydin, M.Z. Borra, E. Semiz & F. Es
METU, Ankara, Turkey
2CV.2.82 Uniformity of Black Silicon Texture and Its Impact on Cell Performance
UNSW Australia, Sydney, Australia
S. Zou, X.-S. Wang & G. Xing
Canadian Solar, Suzhou, China

2CV.2.83 Process Optimization for Inline Black Silicon Based Solar Cell Production Line
M.C. Raval, I. Melnyk, A. Teppe, S. Madugula, W. Jooss & P. Fath
RCT-Solutions, Constance, Germany
S. Gok, T. Eren, M. Comak & M. Ender
BereketEnerji, Pamukkale, Turkey
B. Hu & J. Zhou
RCT Automation Equipment, Suzhou, China

2CV.2.85 Investigation of Laser Damage for Selective Emitter Silicon Solar Cells
J. Dong, W. Wang, Z. Zhang, Z. Ma, Q. Ye, J. Sheng & C. Zhang
GCL System Integration Technology, Suzhou, China

2CV.2.86 Hydrosilane-Free Low-Cost APCVD of SiO2 Films for Crystalline Si Solar Cell Applications
H. Nagel, E. Issa, M. Glatthaar & S.W. Glunz
Fraunhofer ISE, Freiburg, Germany
T. Nagel
Fraunhofer Seminar, Germany

2CV.2.87 Plasma Oxidation for the Front Side Passivation of PERC Solar Cells
A. Mohamed Okasha Mohamed Okasha, B. Kafle, B. Torda, C. Teßmann, A. Moldovan & M. Hofmann
Fraunhofer ISE, Freiburg, Germany

2CV.2.88 Multivariate Statistical Modelling to Correlate PECVD Layer Properties with Plasma Chemistry during Silicon Nitride Deposition
L. Rachdi & M. Hofmann
Fraunhofer ISE, Freiburg, Germany

2CV.2.89 LPCVD In-Situ Doped Phosphorus Polysilicon Layers for Passivated Contact Solar Cells
B. Martel, T. Blevin, H. Lignier, S. Benguesmia & M. Hayes
CEA, Le Bourget du Lac, France
J. Yang & S. Tran
SEMCO Technologies, Montpellier, France

2CV.2.90 Highly Transparent and Highly Conductive Magnetron Sputtered TCO-Layers for Industrial Production of Heterojunction Silicon Solar Cells
S. Hübner, R. Kom, M. Huber & P. Wohlfart
Singulus Technologies, Kahl am Main, Germany

2CV.2.91 Development of Nanostructured FTO Films as Transparent and Diffuse Electrodes and Their Integration in Silicon Solar Cells
S. Lakhdar Chouache, D. Bellet & C. J. Jimenez
Grenoble INP, France
A. Fave
INSA Lyon, Villeurbanne, France
S. Daniele
University of Lyon 1, Villeurbanne, France

2CV.2.92 Low-Energy Plasma-Assisted Deposition of ITO Thin Films for Si Cells by Sublimation in an Anodic Vacuum Arc Discharge
B. Scheffel, T. Preußner, O. Zywitzki, T. Modes & T. Kopte
Fraunhofer FEP, Dresden, Germany

2CV.2.93 FoMet-Connect: Progress of Al-Foil Based Metallization Technology for PERC Cells
J. Paschen, A.A. Brand, T. Fellmeth & J. Nekarda
Fraunhofer ISE, Freiburg, Germany

2CV.2.94 Plated Front Side Metallization on Transparent Conducting Oxide Utilizing Low-Cost APCVD SiO2 Insulating Layer
E. Issa, H. Nagel, M. Glatthaar & S.W. Glunz
Fraunhofer ISE, Freiburg, Germany

2CV.2.95 A Solution for In-Situ Spatially-Resolved Intensity Measurements in Belt Furnaces
A. Herguth, C. Derricks & G. Hahn
University of Konstanz, Constance, Germany

2CV.2.96 Photoluminescence Imaging for Inline Detection of Organic Residues on Silicon Wafers
B. Ahrens & S. Schweizer
University of Applied Sciences, Soest, Germany
P.-T. Miclea, S. Wahl & C. Hagendorf
Fraunhofer CSP, Halle (Saale), Germany
R. Schäfer
S & I Spectroscopy & Imaging, Warstein, Germany

2CV.2.97 Contacting New Solar Cell Metallization Layouts and Contact Quality Surveillance in Production
K. Ramspeck, S. Schenk, M. Alt, P. Waleska, S. Zimmermann & M. Meixner
h.a.l.m. elektronik, Frankfurt, Germany
2CV.2.98 Sorting Criteria for Bifacial PERC Cells for Improved Module Classification
N. Wöhrle, A. Krieg, T. Fellmeth, A. Alapont Sabater, A. Schmid & S. Rein
Fraunhofer ISE, Freiburg, Germany
K. Ramspeck
h.a.l.m. elektronik, Frankfurt am Main, Germany

2CV.2.99 Industry 4.0 PV Factory of the Future: Installing a Test-Bed in a Solar Research Facility
S. Sasidharan, R. Harney & R. Marczak
ISC Konstanz, Germany

2CV.2.100 New Approach for a Combined Process of an Ultrafast Boron-Oxygen Defect Regeneration and Thermal Contact Treatment on Ni-Cu-Ag Plated Cells
S. Roder, V. Arya, A. Brand & J. Nekarda
Fraunhofer ISE, Freiburg, Germany
D. Pysch & N. Bay
RENA, Freiburg, Germany
K. Krauß
Rehm Thermal Systems, Blaueuren, Germany

VISUAL PRESENTATIONS 5CV.3
15:15 - 16:45 Solar Resource and Forecasting / Design and Installation of PV Systems / Storage / Concentrators and PV for Space Applications

Chairpersons:
Carsten Baur
European Space Agency, The Netherlands

Francesco Dolci
European Commission JRC, The Netherlands

Kari Lappalainen
Tampere University, Finland

Christos Protogeropoulos
EEPS, Greece

5CV.3.1 A Comparison of Two Models for the Separation of Direct and Diffuse Irradiance in Plane of Array
D.E. Guzman Razo, S. Halilovic, S. Killinger, B. Müller & C. Wittwer
Fraunhofer ISE, Freiburg, Germany

5CV.3.3 Spectroradiometer Comparison under Outdoor DNI and Indoor High-Power AM0-Like Conditions
R. Galleano, D. Pavanello & W. Zaaiman
European Commission JRC, Ispra, Italy
G. Jüngst
INTA, Torrejon de Ardoz, Spain
M. Halwachs & M. Rennhofer
AIT, Vienna, Austria
A.A. Santamaria Lancia
Technical University of Denmark, Roskilde, Denmark
E.J. Haverkamp & D. Van der Woude
Radboud University, Nijmegen, The Netherlands
A. Minuto & E. Celi
RSE, Piacenza, Italy
M. Theristis
University of Cyprus, Nicosia, Cyprus
R. Couderc & P. Voarino
CEA, Le Bourget du Lac, France

5CV.3.6 Improving Solar Irradiance Forecast Using Ensemble Method in French Guiana
M. Salloum, M. Diallo, A. Primerose & L. Linguet
University of French Guiana, Cayenne, French Guiana

2CV.2.101 Comparing Cz-Si PERC Solar Cells from Various Manufacturers Regarding BO-Related Light-Induced Degradation and Regeneration
D.C. Walter, L. Helmich & J. Schmidt
ISFH, Emmerthal, Germany
O. Romer & T. Pernau
centrotherm international, Blaueuren, Germany

2CV.2.102 Micro- and Macrotexured Foils for Solar Cells Application
O. Sergeev, H. Meddeb & M. Vehse
DLR, Oldenburg, Germany
R. Warmers, G. Jenke & R. Schlegel
SAUERESSIG, Vreden, Germany
S. Brüning
Schepers, Vreden, Germany
P. Veldhuizen & R. van Erven
Morphotonics, Veldhoven, The Netherlands
5CV.3.7  **BQC: A Website to Quality Control Solar Radiation Measurements with Satellite-Based and Reanalysis Databases**
R. Urraca Valle, A. Sanz & F.J. Martinez-de-Pison
University of La Rioja, Logrono, Spain
A.M. Gracia Amillo
European Commission JRC, Ispra, Italy

5CV.3.8  **Best Practices for Solar Resource Assessment: A Reliable Maintenance, Calibration and Traceability Procedures**
A. Amar & M.H. Bouhamidi
MASEN, Rabat, Morocco

5CV.3.9  **Insight from a Detailed Comparison between the Solar Irradiance Measured in the North of France, and Its Satellite-Based and Simulation-Based Estimates**
N. Ferlay, G. Chesnoiu, P. Dubuisson, F. Auriol,
G. Brogniez & F. Parol
University of Lille, Villeneuve d’Ascq, France
T. Elias, M. Compiègne & D. Ramon
HYGEOS, Lille, France

5CV.3.10  **Field Evaluation of Mars™ Optical Soiling Sensor**
M. Gostein & W. Stueve
Atonometrics, Austin, United States
F. Farina & B. Bourne
SunPower, Richmond, United States

5CV.3.11  **Intra-Day Solar Irradiance Forecasting for PV Power Generation Utilising Machine Learning Models**
S. Theocharides, G. Makrides, M. Theristis &
G.E. Georgiou
University of Cyprus, Nicosia, Cyprus

5CV.3.12  **Uncertainty Estimation of Deterministic Solar Irradiance Forecasts for Microgrid Energy Management Using the Analogs Ensemble Method**
F. Calderon-Obaldia & A. Migan-Dubois
GeePs, Gif-sur-Yvette, France
J. Badosa
LMD, Palaiseau, France
V. Bourdin
LIMSI, Orsay, France

5CV.3.13  **Influence of Cloud Cover on Power Fluctuations of Photovoltaic Systems**
L. Visser, T. AISkaif & W.J. H.M. van Sark
Utrecht University, The Netherlands

5CV.3.14  **Photovoltaic Power Forecasting with Ensemble of Learners: Large Test Case from PV Plants in Italy, Zambia and Australia**
M. Tucci
University of Pisa, Italy
A. Bettì, L. Gigoni, F. Ruffini, A. Piazzì & C. Lanzetta
I-EM, Livorno, Italy

5CV.3.15  **Supporting the Global Growth of PV: An International Collaborative to Improve Data Quality and Minimize Measurement Uncertainty**
L. Burnham
Sandia National Laboratories, Albuquerque, United States
S. Dittmann
Anhalt University of Applied Sciences, Köthen, Germany
S.-Y. Oh
Yeungnam University, Gyeongsan, Republic of Korea
A. Benlarabi
IRESEN, Rabat, Morocco
J.-H. Choi
KTL, Seoul, Republic of Korea
M. Ebert & R. Gottschalg
Fraunhofer CSP, Halle (Saale), Germany
B.W. Figgis
QEERI, Doha, Qatar
K.S. Kim
KIER, Yuseong-gu, Republic of Korea
T. Reindl
SERIS, Singapore, Singapore
R. Rüther
UFSC, Florianópolis, Brazil

5CV.3.16  **Physical and Statistical Solar Power Forecasting for an Arbitrary Oriented Panel**
N. Boyouk & N. Munzke
Karlsruhe Institute of Technology,
Eggenstein-Leopoldshafen, Germany

5CV.3.17  **Evaluation of Mars™ Optical Soiling Sensor at a Commercial-Scale PV Power Plant**
M. Gostein & B. Stueve
Atonometrics, Austin, United States
Constellation Energy, Baltimore, United States

5CV.3.18  **Fast Physical Radiative Transfer Code to Compute Solar Radiation Effectively Collected by a Photovoltaic Panel**
E. Thierry, D. Ramon & M. Compiègne
HYGEOS, Lille, France
N. Ferlay
LOA, Villeneuve d’Ascq, France
5CV.3.19 Comparative Study of the Photovoltaic Productivity of the Three Silicon Technologies in Ouarzazate City
Y. Darmane
University Ibn Zohr, Ouarzazate, Morocco

5CV.3.30 Practical Comparison between View Factor Method and Ray-Tracing Method for Bifacial PV System Yield Prediction
J. Kang & C. Reise
Fraunhofer ISE, Freiburg, Germany
J. Jang & K. Lee
Korea Polytechnic University, Siheung, Republic of Korea

5CV.3.31 A Comparison of Ray Tracing and View Factor Simulations of Locally Resolved Rear Irradiance with the Experimental Values
D. Berrian & J. Libal
ISC Konstanz, Germany

5CV.3.32 Bifacial Performance Optimization Studies Using Bifacial Radiance and High Performance Computing
J. S. Stein
Sandia National Laboratories, Albuquerque, United States
C. Deline & S. Ayala Pelaez
NREL, Golden, United States

5CV.3.33 Analysis of Bifacial PV System Energy Performance and Module Mismatch Depending on Atmospheric Environment and System Installation Condition
J. Jang & K. Lee
Korea Polytechnic University, Siheung, Republic of Korea

5CV.3.34 An Empirical Model for Assessing the Bifacial Energy Gain (BEG) of PV Modules
J. Leloux
UPM, Madrid, Spain
J. Robledo
LuciSun, Sart-Dames-Avelines, Belgium
C. Tjendgdrawira & D. Vaduda
Tractebel Engineering, Brussels, Belgium
C. A. Gueymard
Solar Consulting, Colebrook, United States

5CV.3.35 A Ray-Tracing Based 3D Tool for Accurate Prediction of PV Plants Yield
M. Chiodetti, E. Boyère & O. Lgheit Rhazi
EDF R&D, Moret-sur-Loing, France
M. Bila & G. Terrom
EDF Renewables, Paris La Defense, France

5CV.3.36 Explicit Model Based on Approximated I-V Curves for Partial Shading Modelling of Photovoltaic Systems
M. Dallapiccola, P. Ingenhoven, M. Lovati & D. Moser
Eurac Research, Bolzano, Italy

5CV.3.38 Study of PV Systems for Self-Consumption at the UPC
S. Silvestre & D. Fontanilles
UPC, Barcelona, Spain

5CV.3.40 A Comparative Study between Classical and Linear PV Power Plant Architectures
T. Le, T. Tran & H. Colin
CEA, Le Bourget du Lac, France

5CV.3.41 Designing PV Systems below 50 cents/Wp
G. J. Schaeffer
Dutch Solar Energy, Tilburg, The Netherlands

5CV.3.43 Benefits of Adapted PV Module Interconnection Layouts for Mobile Applications - Simulation Results and Outdoor Solar Yield Measurements
H. Hanifi, D. Hahn, D. Götz & S. Schindler
Fraunhofer CSP, Halle (Saale), Germany

5CV.3.44 DC- Versus AC-Based Power Systems for Cost-Effective Electrification of Rural Sub-Saharan Africa
N. Opiyo
Ulster University, Londonderry, United Kingdom

5CV.3.45 Solar Cogeneration a Innovative Technology of CSP and PV a Developing in Morocco Country
S.E. Lachhab, E.A. Ibrahmi & L. Dlimi
Ibn Tofail University, Kenitra, Morocco

5CV.3.51 Fight Global Warming with Solar Energy + Multi-Storage Resilient Island Nano-Grid Smart Home/Building
J. Borland
J. O.B. Technologies, Aiea, United States

5CV.3.52 Legal, Technical and Operational Feedback from a PV System with Storage for Self-Consumption Installed in France
N. Lebert & B. Gaiddon
HESPUL, Lyon, France
J. Buffiere & F. Lagut
ALEC, Grenoble, France
S. Fraisse
Epices Energie, Lyon, France

5CV.3.53 Techno-Economic Analysis and Battery Storage Placement in Grid-Connected Photovoltaic (PV) System
J. Z. Tee, L.H.I. Lim, E.Z.D. Chia & K.H. Tan
University of Glasgow, Singapore, Singapore
5CV.3.54  Diagnosis and Prognosis of Li-Ion Battery State-Of-Health Based On Electrode Potential Shifts
J.-L. Koné & M. Montaru
CEA, Le Bourget du Lac, France
Y. Bultel
LEPMI, Grenoble, France
S. Fiette
CEA, Grenoble, France

5CV.3.55  Simulation of Grid-Tied PV Systems with Battery Storage in PVsyst
B. Wittmer & A. Mermoud
PVsyst, Satigny, Switzerland

5CV.3.56  Grid Flexible Solar: Unlocking Solar’s Full Potential
M. Morjaria
First Solar, Scottsdale, United States

5CV.3.57  Parallel Operation of Battery-Based Storage Systems in Applications to Low-Voltage Nanogrids
Y.-C. Chen & Y.-Y. Tzou
NCTU, Hsinchu, Taiwan

5CV.3.58  CO2 UPHES (Underground Pumped-Hydro Energy Storage) in LRC (Lined Rock Cavern) as Short/Medium-Duration Storage, as Efficient Heat Pump, Alternatively as Long-Duration Storage When Used as Hybrid PTES (Pumped Thermal Electricity Storage)
P. Lalanne
HydroClapeyron, Dinard, France
P. Byrne
University of Rennes, France

5CV.3.62  Electron and Proton Irradiation of GaAs Solar Cells
N. Gruginskie, G.J. Bauhuis, P. Mulder, E. Vlieg & J.J. Schermer
Radboud University, Nijmegen, The Netherlands
F. Cappelluti
Polytechnic University, Turin, Italy

5CV.3.64  MicroFlex: Optical Modeling and Characterization of PseudoMorphic Glass (PMG)
A. Bermudez Garcia, V. Maneval, R. Cariou, P. Voarino, O. Raccourt & Y. Roujol
CEA, Grenoble, France

5CV.3.65  Modelling the Efficiency of Solar Cells for Concentrating Photovoltaic and Thermal Systems
R.R. Vardanyan, D.G. Arstamyan & H.S. Petrosyan
National Polytechnic University of Armenia, Yerevan, Armenia

5CV.3.66  CPV-T Receiver Concepts with Spectral Splitting
A. Resch & R. Höller
University of Applied Sciences Upper Austria, Wels, Austria

5CV.3.67  “Current Pinching” Effect in Multijunction Solar Cells
S.V. Pushko & N.T. Vagapova
JSC Kvant, Moscow, Russia
M.Z. Shvarts, M.A. Mintairov & M.V. Nakhimovich
RAS / Ioffe, St. Petersburg, Russia

5CV.3.68  High-Efficiency Planar Micro-Tracking Photovoltaic Modules with Hybrid Direct/Diffuse Light Collection for Rooftop Installations
G. Nardin, A.F. Aguilar, L. Anglade, F. Gerlich, M. Ackermann & L. Coulot
Insolight, Ecublens, Switzerland
D. Petri, J. Levrat, J. Champlaud, A. Faes & M. Despeisse
CSEM, Neuchâtel, Switzerland
S. Askins, N. Jost, C. Domínguez & I. Antón Hernández
UPM, Madrid, Spain
5CV.4.3  The VAR Method: A Less Environment-Sensitive and Data-Based Approach to Evaluate the Performance Loss Rate of PV Power Plants  
M. Meftah  
EDF R&D, Chatou, France  
E. Lajoie-Mazenc & M. Van Iseghem  
EDF R&D, Écuelles, France  
R. Perrin  
EDF Renouvelables, Colombiers, France  
D. Boubli & K. Radouane  
EDF Renouvelables, Paris, France

5CV.4.4  Advanced Fault Detection for PV Plants: An Enhanced Adimensional Approach  
V. Barone, D. Bertani, S. Guastella & G. Maugerí  
RSE, Milan, Italy

5CV.4.5  Defect Recognition and Power Loss Estimation of PV Systems Using Infrared Thermography  
B.L. Aarseth  
University of Oslo, Kjeller, Norway  
E.S. Marstein  
Institute for Energy Technology, Kjeller, Norway

5CV.4.6  Student Award Finalist Presentation: Fault Inspection of CIGS PV Plant Using Aerial Infrared Thermography  
D. Amstad & A. Häberle  
University of Applied Sciences, Rapperswil, Switzerland  
A.K. Vidal de Oliveira & R. Rüther  
UFSC, Florianópolis, Brazil

5CV.4.7  Field Tests of Soiling Detection System for PV Modules  
M. Korevaar, T. Bergmans, J. Mes & X. van Mechelen  
Kipp & Zonen, Delft, The Netherlands  
A. Alami Merrouri  
IRESEN, Rabat, Morocco  
F. Wolfertstetter & S. Wilbert  
German Aerospace Center, Tabernas, Spain

5CV.4.8  Operation of PV Arrays at the Largest MPP Voltage Instead of the Global MPP Voltage during Irradiance Transitions Caused by Clouds  
K. Lappalainen & S. Valkealahti  
Tampere University, Finland

5CV.4.9  PVs under Harsh Dust Soiling: Modeling and Prediction of the Performance for a Broad Range of Soiling State  
N. Barth, B.W. Figgis, S.P. Aly & S. Ahzi  
QEERI, Doha, Qatar

5CV.4.10  PV Module Diagnosis with Automatic Online IV Curve Measurement  
A. Plissonnier, S. Lespinats, M. Amhal & H. Colin  
CEA, Le Bourget du Lac, France

5CV.4.11  Remote Monitoring of PV Station for Rain Stimulation System  
D.V. Aghabekyan, L.M. Lakhoyan & A.A. Vardanyan  
NPUA, Yerevan, Armenia

5CV.4.12  Identification of Series Resistance from the Measured PV Panel Electrical Characteristics  
H. Kalliojärvi-Viljakainen & S. Valkealahti  
Tampere University, Finland  
G. Spagnuolo  
University of Salerno, Fisciano, Italy

5CV.4.13  Development of a Big Data Bank for PV Monitoring Data, Analysis and Simulation in COST Action ‘PEARL PV’  
A.H.M.E. Reinders & F. van Slooten  
University of Twente, Enschede, The Netherlands  
D. Moser  
Eurac Research, Bolzano, Italy  
W.G.J. H.M. van Sark  
Utrecht University, The Netherlands  
G. Oreski  
PCCL, Leoben, Austria  
N. M. Pearsall  
Northumbria University, Newcastle upon Tyne, United Kingdom  
M. Devetakovicc  
University of Belgrade, Serbia  
J. Leloux  
UPM, Madrid, Spain  
D. Capeska Bogatinoska  
UIST, Ohrid, Macedonia  
A. Driesse  
PV Performance Labs, Freiburg, Germany

5CV.4.14  PV|Harvester – A Tool for PV Power Plant Performance Evaluation and Economical Optimization  
R. Höller, A. Hägl, M. Birajdar & A. Royes Moreno  
FH OOE, Wels, Austria  
D. Gudopp  
deea solutions, Frankfurt am Main, Germany

5CV.4.15  Performance, Faults and Energy Losses of Photovoltaic Power Plants in France: Methodology and Feedback  
J. Sayritupac, M. Amhal & H. Colin  
CEA, Le Bourget du Lac, France
5CV.4.16 Application of an Efficiency-Degradation Model to a 34-Year Field-Exposed Si-Module Array
L. Abenante, F. De Lia, R. Schioppo & S. Castello
ENEA, Rome, Italy

5CV.4.18 Effective False Detection Methods for Safety Predictable Power Performance of PV Power Station
Konkuk University, Seoul, Republic of Korea

5CV.4.19 Optimization of the Cost Priority Number (CPN) Methodology to the Needs of a Large O&M Operator
G. Oviedo Hernández & P. Chiantore
BayWa, Rome, Italy
S. Lindig & D. Moser
Eurac Research, Bolzano, Italy

5CV.4.20 A Machine Learning-Based Predictive Maintenance System for Solar Inverters
G. Guerra & P. Mercade Ruiz
GreenPowerMonitor, Barcelona, Spain
L. Landberg
DNV GL, Hellerup, Denmark

5CV.4.21 Characterization and Modelling of the Soiling Effect on the PV Generation under Urban Mediterranean Conditions
N. Martín Chivelet, J. Polo, M. Alonso-Abella, C. Sanz & N. Vela
CIEMAT, Madrid, Spain
F.J. Batlles, J. Alonso-Montesinos, J.L. Bosch & J. Barbero
UAL, Almería, Spain
G. López
UHU, Huelva, Spain

5CV.4.22 Results and Lessons Learned from the Field Deployment of DUSST, a Low-Maintenance PV Soiling Sensor
L. Micheli, F. Almonacid & E.F. Fernández
University of Jaén, Spain
J. Morse & M. Muller
NREL, Golden, United States

5CV.4.23 Experimental Comparison of the Soiling Effect on Different PV Technologies
J.G. Bessa, L. Micheli, E.F. Fernández & F. Almonacid
University of Jaén, Spain

5CV.4.24 Opportunities to Improve Photovoltaic Plant Maintenance Informed by Data Analytics of Commercially-Operating Large-Scale Plants
M.L. Bolen & S. Hackett
EPRI, Charlotte, United States
T. Gunda
Sandia National Laboratories, Albuquerque, United States

5CV.4.25 Detailed Loss Analysis for Wall Mounted Photovoltaic Systems at High Latitude; A Comparison of Multicrystalline Si- to CIGS- Modules
Institute for Energy Technology, Kjeller, Norway

5CV.4.26 Failure Modeling for Detection and Diagnostic Studies of Large-Scale Grid-Connected Photovoltaic System
M. Malvoni
NTUA, Zografou, Greece
Y. Chaibi
ENSAAM, Mars, Morocco

5CV.4.27 Comparative Analysis of a Very Large CIS and Small c-Si PV Systems under Tropical Climate
K. Kunaifi & A.H.M.E. Reinders
University of Twente, Enschede, The Netherlands
D. Kaharudin, A. Harmanto & K. Mudiarto
PT PJ B, Surabaya, Indonesia

5CV.4.28 Solar Power Forecasting with LSTM Network Ensemble
M. Emamian, J. Milimonfared, A. Eskandari & R. Hosseini Abardeh
Amirkabir University of Technology, Tehran, Iran
M. Aghaei
Albert-Ludwigs-University of Freiburg, Germany

5CV.4.29 Performance and Electroluminescence Analysis on Reliability and Lifetime of Thin-Film Photovoltaics (PEARL TF-PV)
E. Sovetkin & V. Huhn
Forschungszentrum Jülich, Germany
A.W. Weeber
Delft University of Technology, The Netherlands
A. Martin
Crystalsol, Vienna, Austria
B. Rau
HZB, Berlin, Germany
E.J. Achterberg
Solar Tester, Schinnen, The Netherlands
M. Rennohor
AIT, Vienna, Austria
M. Theelen
TNO, Eindhoven, The Netherlands
T. Weber
PI Berlin, Germany
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors/Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>5CV.4.31</td>
<td>Mapping Annual and Seasonal Soiling in Western Europe</td>
<td>L. Micheli, J.G. Bessa, F. Almonacid &amp; E.F. Fernández (University of Jàén, Spain)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J. Leloux, UPM, Madrid, Spain</td>
</tr>
<tr>
<td>5CV.4.32</td>
<td>Identifying Order of ARIMA Model Using Different Criteria Selection for Forecasting of Degradation Rates</td>
<td>A. Kyprianou, G. Makrides &amp; G.E. Georgiou (University of Cyprus, Nicosia, Cyprus)</td>
</tr>
<tr>
<td>5CV.4.33</td>
<td>GOVP: A Global Approach to Reduce PV Electricity Cost</td>
<td>S. Guillerez &amp; B. Commault (CEA, Le Bourget du Lac, France)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. Apraiz, Mondragon Assembly, Aretxabaleta, Spain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. Virtuani, EPFL, Neuchâtel, Switzerland</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. Canino, ENEL Green Power, Rome, Italy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G. Demofonti, Convert, Rome, Italy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R. Alonso, Tecnalia, San Sebastián, Spain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G. Maugeri, RSE, Milan, Italy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X. Rodriguez, LEITAT, Terrassa, Spain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I. Savych, GXC Coatings, Goslar, Germany</td>
</tr>
<tr>
<td>5CV.4.34</td>
<td>A Comparative Study of the Performance Features of Heterojunction and Diffusion Si Modules in Humid Continental and Subarctic Climates</td>
<td>A. Titov, K. Emtsev, D. Andronikov, A. Abramov &amp; D. Orekhov (R&amp;D Center TFTE, St. Petersburg, Russia)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. Bulygin, A. Dubrovskiy &amp; I. Shakhray (Hevel Solar, Novocheboksarsk, Russia)</td>
</tr>
<tr>
<td>5CV.4.35</td>
<td>Quantifying Long Term PV Performance and Degradation under Real Outdoor and IEC 61853 Test Conditions Using High Quality Module IV Measurements</td>
<td>S. Ransome (Steve Ransome Consulting, Kingston upon Thames, United Kingdom)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J. Sutterlueti, Gantner Instruments, Schruns, Austria</td>
</tr>
<tr>
<td>5CV.4.37</td>
<td>Sunlight Variation Study for Drone-Based Daylight Electroluminescence Imaging of PV Modules</td>
<td>G.A. dos Reis Benatto, C. Mantel, A.A. Santamaria Lancia, N. Riedel, S. Thorsteinsson, P.B. Poulsen &amp; S. Forchhammer (Technical University of Denmark, Roskilde, Denmark)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H.R. Parikh, S.V. Spathar &amp; D. Sera (Aalborg University, Denmark)</td>
</tr>
<tr>
<td>5CV.4.39</td>
<td>Effect of Dust on Solar Photovoltaic Modules in Shiraz</td>
<td>S.A. Bahreini &amp; M. Yaghoubi (Shiraz University, Iran)</td>
</tr>
<tr>
<td>5CV.4.40</td>
<td>Software Correction of Angular Misalignments of Tilted Reference Solar Cells Using Clear-Sky Satellite Open Data</td>
<td>T. Barbier (Optimum Tracker, Meyreuil, France)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P. Blanc &amp; Y.-M. Saint-Drenan (MINES ParisTech, Sophia-Antipolis, France)</td>
</tr>
<tr>
<td>5CV.4.41</td>
<td>A Probabilistic Approach to Predict the Degradation of a PV System</td>
<td>M. Malvoni (ICCS/NTUA, Zografou, Greece)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N.M. Kumar (City University of Hong Kong, China)</td>
</tr>
<tr>
<td>5CV.4.42</td>
<td>Impact of Defective Modules on the Characteristics of a Large-Scale Grid-Connected PV Power Plant</td>
<td>T. Finsterle, L. Cerná, P. Hrzina &amp; V. Benda (CTU, Prague, Czech Republic)</td>
</tr>
<tr>
<td>5CV.4.43</td>
<td>Soiling Ratios and Management Strategies in Utility Scale PV Plants in the Atacama Desert</td>
<td>P. Darez &amp; C. Darr (350renewables, Las Condes, Chile)</td>
</tr>
</tbody>
</table>
5CV.4.44 A New Optical Device for PV Soiling Monitoring
A. Azouzoute & A. Ghennioui
IRESEN, Rabat, Morocco
M. Chouitar
Lycée Technique Mohammedia, Morocco
M. Garoum
University Mohammed V in Rabat, Morocco

5CV.4.45 Design of an Application for the Estimation of the PV Power Plant Production in Real Time
J. Alonso-Montesinos, J. Barbero & F.J. Batlles
UAL, Almeria, Spain
G. López
UHU, Huelva, Spain
J. Polo, N. Martin Chivelet, M. Alonso-Abella & N. Vela
CIEMAT, Madrid, Spain

5CV.4.46 Hyperspectral Photoluminescence Imaging as a Tool to Studying Degradationof Outdoor Silicon Solar Panels
M. Vukovic, A.S. Flo, E. Olsen, T. Mehl & I. Burud
NMBU, Ås, Norway

Thursday, 12 September 2019
VISUAL PRESENTATIONS 2DV.1
12:45 - 15:00 Homojunction Solar Cells / Heterojunction Solar Cells

Chairpersons:
Arthur Weeber
ECN part of TNO, The Netherlands
Mathieu Despeisse
CSEM, Switzerland
Delfina Muñoz
CEA, France
Joachim John
imec, Belgium

2DV.1.1 Surface Passivation of Atmospheric Pressure Dry Etched Multicrystalline Silicon Surfaces
A.I. Ridoy, B. Kafle, M. Klitzke, N.W. Khan & M. Hofmann
Fraunhofer ISE, Freiburg, Germany
L. Clochard & E. Duffy
Nines Photovoltaics, Dublin, Ireland

2DV.1.2 Functionalized Oxides for Bifacial Solar Cells with Passivated Contacts: First Results of the OXYGEN Project
T. Desrues, A. Morisset, E. Bruhat, A. Veau, M. Hayes,
P. Bellanger, R. Cabal & S. Dubois
CEA, Le Bourget du Lac, France
A. Kaminski-Cachopo, Q. Raffay, N. Ait-Abdelkader &
Y. Kalboussi
IMEP-LAHC, Grenoble, France
J.P. Kleider, J. Alvarez & M.E. Gueunier-Farret
CNRS, Gif-sur-Yvette, France
C. Marchat
IPVF, Palaiseau, France
D. Blanc-Péllissier, P. Schütz, C. Chevalier & M. Lemi
INSAS Lyon, Villeurbanne, France
D. Munoz-Rojas & V.H. Nguyen
LMGP, Grenoble, France
G. Borvon & F. Torregrosa
Ion Beam Services, Peynier, France
2DV.1.3 Simultaneous Contacting of Boron and Phosphorus Doped Surfaces with a Single Screen Printing Paste
J.D. Huyeng, A. Stribille, M.G. Prince, L.C. Rendler & U. Eitner
Fraunhofer ISE, Freiburg, Germany
C. Ebert
SCHMID Group, Freudenstadt, Germany

2DV.1.4 Optimization of Boron Doping Paste for Simplified Fabrication of Interdigitated Back Contact Solar Cells
A. Aliefendioglu, E.H. Çiftpinar & R. Turan
METU, Ankara, Turkey

2DV.1.5 A Comparison Study of Front and Rear Surface Passivation Techniques of Nitric Acid Oxidation of Silicon on Phosphorus-Diffused and Non-Diffused Texture Surfaces for p-Type Bifacial PERC
S. Joonwichen, Y. Kida, M. Moriya, S. Utsunomiya, K. Shirasawa & H. Takato
AIST, Koriyama, Japan

2DV.1.6 532 nm Laser Treated Selective Emitter Profiles Study with SIMS and ECV Technics
A. Moussi, S. Meziani, L. Benharrat & S. Chaouchi
CRTSE, Algiers, Algeria
M. Slimane
CDTA, Algiers, Algeria

2DV.1.7 Development of an Industrially-Relevant Process for Passivating Contacts on p-Type Silicon Wafers
A. Desthieux, J. Posada & P.P. Grand
EDF R&D, Palaiseau, France
C. Broussilou, B. Bazer-Bachi & G. Goarer
EDF ENR PWT, Bourgoin Jallieu, France
E. Drahi
TOTAL, Palaiseau, France
P. Roca i Cabarrocas
CNRS, Palaiseau, France

2DV.1.8 Investigation on the Surface Texturing of the Casting Quasi-Single Crystal Silicon
D. Hu, W. Lian, Q. Wei & Z. Ni
Talesun Solar, Changshu, China

2DV.1.9 Stability of the Regenerated p-Type Multi-Crystalline PERC Solar Cells after Light and Evaluated Temperature Induced Degradation
J. Zhu, R. Sødenå & S.E. Foss
Institute for Energy Technology, Kjeller, Norway
B. He
Donghua University, Shanghai, China
Q. Wei, H. Qian & Z. Ni
Talesun Solar, Suzhou, China

2DV.1.10 High Voltage Solar Cells Based on Nanostructured Ultra-Thin Silicon
N. Moulin, M. Amara, F. Mandorlo & M. Lemiti
INSA Lyon, Villeurbanne, France

2DV.1.11 Characteristics of Reaction Kinetics on Light-Induced Degradation and Regeneration Process with Passivation Properties in p-Type PERC Solar Cell
S.M. Kim, S.H. Jung, J. Kim, G. Choi & Y.B. Kim
GERI, Gumi, Republic of Korea
M.G. Kang & H.-E. Song
KIER, Daejeon, Republic of Korea

2DV.1.13 A Novel Method of Rear-Side Alkaline Polishing for Low-Cost and High-Efficiency PERC Solar Cells
E-TON Solar Tech, Tainan, Taiwan

2DV.1.14 Effects of Particle Size of Aluminum Powder in Silver/Aluminum Paste on n-Type Solar Cells
T. Aoyama
Noritake, Miyoshi, Japan
M. Aoki & I. Sumita
Asada Mesh, Matsubara, Japan
A. Ogura
Meiji University, Kawasaki, Japan

2DV.1.15 Si Surface Passivation by GaOx Films Deposited Using a Mist Chemical Vapor Deposition Process
University of Hyogo, Himeji, Japan

2DV.1.16 Comparative Study on Temperature Coefficients of Different Kinds of Industrial Silicon Solar Cells
H. Wang, X. Cheng & H. Yang
Xi’an Jiaotong University, China

2DV.1.17 Enhanced TiO2 Surface Passivation and Thermal Stability with Al Doping
W. Liang, K.C. Fong & J. Tong
ANU, Canberra, Australia
K.R. McIntosh
PV Lighthouse, Coledale, Australia

2DV.1.18 Optimization of Triple-Layer Antireflection Coating with SiOx on Black Silicon PERC Solar Cell
S. Zhang, Y. Yao, H. Qian, Y. Li, Q. Wei, Z. Ni & W. Lian
Talesun Solar, Changshu, China
J. Jie & X. Zhang
Soochow University, Suzhou, China
2DV.19 A Study on Aluminum Pastes for Rear Emitter in n-Type Silicon Solar Cells
M. Aoki & T. Sumita
Asada Mesh, Matsubara, Japan
T. Aoyama
Noritake, Miyoshi, Japan

2DV.20 Investigating the Performance of Molybdenum Oxide-Silicon Nanowires Solar Cells
C. Lu, A.B. Prakoso & R. Rusli
NTU Singapore, Singapore

2DV.21 Low Temperature p-n Junction Fabrication by PECVD for n-PERT Solar Cells: An Alternative to Boron Diffusion
M. Chrostowski & E. Drahi
TOTAL, Paris, France
J. Alvarez & J.-P. Kleider
CNRS, Gif sur Yvette, France
K.-H. Kim
Cheongju University, Republic of Korea
P. Roca i Cabarrocas
CNRS, Palaiseau, France

2DV.22 PECVD Grown SiOx/Poly-Si for TOPCon Solar Cell Application
Applied Materials, Santa Clara, United States

2DV.23 Understanding of UV-ps Laser Ablation Mechanisms on Bifacial n-PERT Silicon Solar Cells and Impact on Ni/Cu Plating
C. Molto, J.E. Lee & S. Béchu
IPVF, Palaiseau, France
J. Nekarda & V. Arya
Fraunhofer ISE, Freiburg, Germany
M. Bouttemy, A. Etcheberry & A.-M. Goncaves
UVSQ, Versailles, France
E. Drahi
TOTAL, Paris, France
P.P. Grand
EDF R&D, Palaiseau, France

2DV.24 Ultra-Fine Contact Finger Achieved by Pattern Transfer Printing (PTP) Technology for Silicon Solar Cells – Recent Development
A. Adrian, D. Rudolph & J. Lossen
ISC Konstanz, Germany
M. Matusovsky & A. Noy
Utilight, Yavne, Israel

2DV.25 Efficient Sprayed Al2O3 Surface Passivation for Multicrystalline Silicon Solar Cells
L. Zougar, S. Sali, S. Kermadi & M. Boumaour
CRTSE, Algiers, Algeria
M. Kechoane
USTHB, Algiers, Algeria

2DV.26 Excellent Silicon Surface Passivation with Atomic Layer Deposited SiO2 Thin Films
S. Li, J. Xu, N. Yang, X. Yuan, C. Liu & H. Li
East China University of Science and Technology, Shanghai, China

2DV.27 Laser Enhanced Contact Optimization as a Multi-Faceted Approach to Improved LCOE via Increased Efficiency and Increased Yield
R.W. Mayberry & K. Myers
Heraeus, West Conshohocken, United States
A. Henning
Heraeus, Hanau, Germany
H. Zhao & E. Hofmüller
Cell Engineering, Kabelsketal, Germany

2DV.35 Recent Results for the Deployment of Silicon Heterojunction Production Lines at ENEL Green Power: Effect of the Number of Busbars
W. Favre, L. Sicot, V. Barth, A. Bettinelli, A. Danel,
J.-F. Lerat & P.-J. Ribeyron
CEA, Le Bourget du Lac, France
M. Sciuto, G. Condorelli, A. Ragonesi, A. Canino,
M. Foti & C. Gerardi
ENEL Green Power, Catania, Italy

Y. Abdulraheem & M.Y. Ghannam
Kuwait University, Safat, Kuwait
H. Sivaramakrishnan Radhakrishna & I. Gordon
imec, Leuven, Belgium

2DV.37 Power Loss Mechanisms of Ultra-Thin a-Si:H/c-Si Heterojunction Solar Cells with over 20% Efficiencies
Y. Imai, M. Kozawa & H. Fujiwara
Gifu University, Japan
H. Sai, M. Tanabe & T. Matsu
AIST, Tsukuba, Japan
2DV.1.38  **Si-Based Heterojunction Solar Cells Passivated by a-SiOx:H Thin Film**  
K. Saito  
Fukushima University, Japan  
T. Takamura, Y. Ichikawa & M. Konagai  
Tokyo City University, Japan

2DV.1.39  **Silicon Heterojunction Solar Cells with Electroplated Copper Grid Electrodes**  
Hanergy Thin Film Power, Chengdu, China

2DV.1.40  **Development of Transparent Conductive Oxide for Silicon Heterojunction Solar Cell**  
K. Nakamura & Y. Ohshita  
Toyota Technological Institute, Nagoya, Japan  
K. Muramatsu  
Namins, Niigita City, Japan  
T. Nishihara & A. Ogura  
Meiji University, Kawasaki, Japan

2DV.1.41  **Effect of Argon-Hydrogen Gas Mixture on Properties of ITO Layers and Performance of Silicon Heterojunction Solar Cells**  
P. Ishmuratov, V. Yakovlev, V. Tarasov & A. Dubrovskiy  
Hevel Solar, Novocheboksarsk, Russia  
I. Nyapshaev, S. Abolmasov, D. Andronikov, K. Emtsev & A. Abramov  
R&D Center TFTE, St. Petersburg, Russia

2DV.1.42  **Progress in In2O3-Based Transparent Conductive Oxide Films for Solar Cells**  
T. Koida, Y. Ueno & H. Shibata  
AIST, Tsukuba, Japan

2DV.1.43  **Overview of Deposition Methods for Heterojunction Solar Cells with High Deposition Rates**  
S. Leszczyński, C. Strobel, B. Leszczynska, M. Albert & J.W. Bartha  
Technical University of Dresden, Germany  
F. Stahr & J. Kuske  
FAP, Dresden, Germany

2DV.1.44  **DC Sputtering of TCO Layers in Neon Atmosphere and Its Application to Silicon Heterojunction Solar Cells**  
S. Abolmasov, V. Verbitskiy, I. Nyapshaev, A. Abramov, D. Andronikov & E. Terukov  
R&D Center TFTE, St. Petersburg, Russia  
I. Shakhray  
Hevel LLC, Moscow, Russia

2DV.1.45  **17.25%-Efficient, All Room-Temperature Silicon Solar Cells**  
S.-H. Kim, J.Y. Jung & J.-H. Lee  
Hanyang University, Ansan, Republic of Korea  
R.B. Wehrspohn  
Fraunhofer IWM, Halle (Saale), Germany

2DV.1.46  **Room Temperature Dopant Free Carrier Selective Contact Solar Cells on Industrially Viable Cz Wafers**  
M. Nayak, K. Singh, S. Mudgal, S. Mandal, S. Singh & V.K. Komarala  
IIT Delhi, New Delhi, India

2DV.1.47  **Study of the Influence of Defects in Doped Thin-Film Layers in Heterojunction Silicon Solar Cells Employing Opto-Electrical Simulations**  
J. Balent, J. Krc, F. Smole & M. Topič  
University of Ljubljana, Slovenia

2DV.1.48  **Transport Losses at the TCO/a-Si:H/c-Si Heterojunction: Influence of Different Layers and Annealing**  
C. Luderer, M. Bivour & M. Hermle  
Fraunhofer ISE, Freiburg, Germany

2DV.1.49  **Impact of Interfacial SiOx on Carrier Selectivity and Thermal Stability of Transition Metal Oxide**  
J. Tong, W. Liang, M. Ernst, D. Walter, M. Stocks, A. Blakers & K.C. Fong  
ANU, Canberra, Australia  
K.R. McIntosh  
PV Lighthouse, Coledale, Australia

2DV.1.50  **Hydrogen-Doped In2O3 as High Mobility TCO for Silicon Heterojunction Solar Cell Application**  
M.L. Addonizio, A. Spadoni & A. Antonia  
ENEA, Portici, Italy

2DV.1.51  **Approach to Clarify the Cause of Handling Defects in SHJ Cell Production through the Interplay of Different Imaging Techniques**  
A. Fischer, A. Moldovan & J. Rentsch  
Fraunhofer ISE, Freiburg, Germany

2DV.1.52  **The Economic Case for IBC Silicon Heterojunction Solar Cells**  
R. Vasudevan, S. Harrison, P. Guillaume, P.J. Ribeyron, D. Muñoz & C. Roux  
CEA, Le Bourget du Lac, France
2DV.1.53 Improved Front Contact for Silicon Heterojunction Solar Cells with n-Type Nanocrystalline Silicon Oxide Window Layer
W. Duan, D. Qiu, A. Lambertz, M. Pomaska & K. Ding
Forschungszentrum Jülich, Germany

2DV.1.54 Graphene Application as Non Conventional Transparent Conductive Electrode in c-Si Based Heterojunction Solar Cells
L. Lancellotti, E. Bobeico, M. Della Noce, L.V. Mercaldo, I. Usati & P. Delli Veneri
ENEA, Portici, Italy
G.V. Bianco, A. Sacchetti & G. Bruno
CNR - IMIP, Bari, Italy

2DV.1.55 Optimization Studies on the Material Properties of ITO as Window Layer for Silicon Heterojunction Solar Cells
S. Güler, E. Donecark, A.E. Aytaç, A.C. Erçelebi & R. Turan
METU, Ankara, Turkey

2DV.1.56 Development of Phosphorus Thin Doped Layers by Plasma Immersion for Homo-Hetero Junction Solar Cells Application
CEA, Le Bourget du Lac, France

2DV.1.57 Application of Different Gas Mixtures Types in p-Doped Layers of Silicon Heterojunction Solar Cells in the Rear Emitter Configuration
A. Abramov, D. Andronikov, K. Emteev, G. Ivanov, A.V. Semenov & E.I. Terukov
RAS / Joffe, St. Petersburg, Russia
I. Shakhray
Hevel Solar, Moscow, Russia

2DV.1.59 Influence of Surface Defectivity on the Performances of Silicon Heterojunction Solar Cells
V. Giglia, J. Veirman & R. Varache
CEA, Le Bourget du Lac, France
E. Fourmond
INSA Lyon, Villeurbanne, France

2DV.1.60 Optoelectronic Properties of Sputtered TCOs and Their Application in Silicon Heterojunction Solar Cells
Z. Yao, W. Duan, A. Mikosch, A. Lambertz, J. Hüpkes, M. Pomaska, K. Bitkau & K. Ding
Forschungszentrum Jülich, Germany
H. Shen
Sun Yat-sen University, Guangzhou, China

2DV.1.61 Plating Processes for Silicon Heterojunction Cells: An Overview
A. Lachowicz, C. Ballif & M. Despeisse
CSEM, Neuchâtel, Switzerland

2DV.1.62 Thermally Stable MoOx Hole Selective Contact with a Tunneling Interlayer for Industrial Size Silicon Solar Cells
ECN part of TNO, Petten, The Netherlands

2DV.1.63 TCO Layers with High Charge Carrier Mobility as Transparent Conductive Contacts for Silicon Heterojunction Solar Cells
P. Ishmuratov & A. Dubrovskiy
Hevel Solar, Novocheboksarsk, Russia
I. Nyapshaev, S. Abolmasov, D. Andronikov, A. Abramov, E.I. Terukov & D. Orekhov
R&D Center TFTE, St. Petersburg, Russia
I. Shakhray
Avelar Solar, Novocheboksarsk, Russia
M. Dimer, U. Graupner, M. Thumsch & E. Schneiderlöcher
VON ARDENNE, Dresden, Germany

2DV.1.64 A Proposed Flexible p-Si/n-ZnO Heterojunction Based All Solid-State Solar Cell
A.K. Dikshit, A. Singh & P. Chakrabarti
IIT, Varanasi, India
K. Kamal
MNNIT, Prayagraj, India
Y. Dwivedi & N. Mukherjee
NIT, Kurukshetra, India

2DV.1.65 Investigation of Silicon Films for Heterojunction Solar Cells Deposited by Hot-Wire CVD
M. Justianto, M. Höfer, T. Harig & V. Sittinger
Fraunhofer IST, Braunschweig, Germany
F. Schoerg
RENA, Gütenbach, Germany
M. Dimer
VON ARDENNE, Dresden, Germany
O. Astakhov
Forschungszentrum Jülich, Germany

2DV.1.66 Integrating Nanopyramid Gratings into Crystalline Silicon Solar Cells: Augmenting the Absorption of Infrared Photons
imec, Leuven, Belgium
2DV.1.67  Limits of the Open-Circuit Voltage and Fill Factor in Thin Silicon Heterojunction Solar Cells
O. Astakhov, T. Merdzhanova, D. Weigand, V. Buga, A. Gad, K. Ding & U. Rau
Forschungszentrum Jülich, Germany

2DV.1.68  Interplay of Intrinsic and Doped Amorphous Silicon Layer and ITO Properties and Process Conditions on Contact Passivation in Silicon Heterojunction Cells
T.S. Yadav & A. Kottantharayil
IIT Bombay, Mumbai, India
H. Sivaramakrishnan Radhakrishna, I. Gordon & J. Poortmans
imec, Leuven, Belgium

2DV.1.69  Poly-Si Passivated Solar Cells Fabricated by Firing Contact Metallization with the Shallow Silver Penetration
H.-C. Chang, C.-C. Lo, S.-T. Liao, B.-C. Kung, C.-J. Huang & M.-T. Kuo
ITRI, Hsinchu, Taiwan
C.-L. Cheng
TeraSolar Energy Materials, Hsinchu, Taiwan

R. Sharma, M. Recamán Payo,
H. Sivaramakrishnan Radhakrishna & J. Poortmans
imec, Leuven, Belgium

2DV.1.72  Plasma Oxidation for Polycrystalline Silicon-Based Passivated Contact
UNSW Australia, Sydney, Australia

2DV.1.73  Effect of a-Si: H Layer Thickness on the Passivation of the c-Si Wafers in the Heterojunction Solar Cells
A. Trad-Khodja, F. Kezzoula, S. Nouali & H. Menari
CRTSE, Algiers, Algeria

VISUAL PRESENTATIONS 7DV.2
15:15 - 16:45 Costs, Economics, Finance and Markets / Policies and Scenarios for Renewables, Societal and Global Challenges

Chairpersons:
Gaetan Masson
Becquerel Institute, Belgium

Maria Getsiou
European Commission DG RTD, Belgium

7DV.2.1  Super PV Project—Innovative and High-Quality PV Systems to Regain Leadership of European PV Businesses on the World Market
J. Ulbikas & V. Ulbikaite
PROTECH, Vilnius, Lithuania
J. Denafas
SOLITEK R&D, Vilnius, Lithuania
R. Witteck & M. Köntges
ISFH, Emmerthal, Germany
M. Topić
University of Ljubljana, Slovenia
F. Frontini, P. Bonomo & E. Saretta
SUPSI, Canobbio, Switzerland
P. Macé
Becquerel Institute, Brussels, Belgium
P.J. Bolt
TNO, Eindhoven, The Netherlands
A.G. Ulyashin
SINTEF, Oslo, Norway
T. Haarberg
BNW-Energy, Trondheim, Norway
W. Palitzsch
Loser Chemie, Freiberg, Germany
B. Terheiden
University of Konstanz, Constance, Germany
I. Weiss & A. Fuentes Cano
WIP Renewable Energies, Munich, Germany
J.L. Domínguez-García
IREC, Barcelona, Spain
7DV.2.5  CitizEE Project - Scaling Up Public Sustainable Investments via Citizen Financing Schemes
P. Alonso & S. Caneva
WIP Renewable Energies, Munich, Germany
J.-F. Marchand, L. Vanstraelen & M. Casas
ENERGINVEST, Brussels, Belgium
F. Pause & M. Wimmer
Stiftung Umweltenergierecht, Würzburg, Germany
N. Brito-Jorge
GoParity, Lisbon, Portugal
E. Steyaert & H. Ruttens
VEB, Brussels, Belgium
V. Segon
REGEA, Zagreb, Croatia
R. Adomaviciene, K. Vaskelien & G. Zakevicius
Public Investment Development Agency, Brussels, Belgium
L. Della-Sala
European Crowdfunding Network, Brussels, Belgium

7DV.2.6  Residential PV Prosumers: Analysis of the Reality in Chile
J.C. Osorio-Aravena
Universidad Austral de Chile, Coyhaique, Chile
E. Muñoz-Cerón
University of Jaén, Spain

7DV.2.7  An Overview of Patent Application Data in the Field of Photovoltaics
N. Persat & M.-A. Le Meur
European Patent Office, Berlin, Germany
M. Boero & C. Königstein
European Patent Office, Rijswijk, The Netherlands

7DV.2.8  Web Tool for Early Stages of Techno-Economical Analysis of Shared Solar Cooperatives in the Brazilian Context
K. Schneider & R. Rüther
UFSC, Florianópolis, Brazil
M.O.M. de Oliveira
OCB, Brasília, Brazil

7DV.2.9  Financial Investment in off Grid Solar PV for Rural Households
E.L. Meyer & S. Zuma
University of Fort Hare, Alice, South Africa

7DV.2.10  Technical-Economic Analysis of Photovoltaic Based Distributed Generation Systems for the Mexican Industrial Sector
N.R. Leon Rodriguez
UNAM, Temixco, Mexico

7DV.2.11  Brazilian Business Models in Distributed Photovoltaic Generation: International Experiences and New Opportunities
J.P. Correa da Costa e Silva, M. Mortari Carrilho,
F. Luiz Cyrino Oliveira & R. Flora Calili
PUC-Rio, Rio de Janeiro, Brazil

7DV.2.12  Most Recent Bottom-Up Costs Analysis from NREL for the PV Module Supply Chain and Systems Coupled with Storage
M. Woodhouse
NREL, Golden, United States

7DV.2.13  System Contribution of Residential Photovoltaic (PV) Self-Consumption
H.J.J. Yu
CEA, Gif sur Yvette, France

7DV.2.14  Challenges for Financing Utility Scale Solar PV Projects Using Bifacial Technologies
D. Barandalla, X. Puerta & M. Clemente
UL Renewables, Barcelona, Spain

7DV.2.15  Solar PV on the Distribution Grid: Smart Integrated Solutions of Distributed Generation Based on Solar PV, Energy Storage Devices and Active Demand Management
H. Bartoszewicz-Burczy
Institute of Power Engineering, Warsaw, Poland

7DV.2.16  Energy, Cost And CO2 Savings from Replacing Residential Airconditioners by Impressive Photovoltaic Windows
M. de Wild-Scholten
SmartGreenScans, Groet, Netherlands
F. Sauvage
University of Picardie, Amiens, France
M. Grätzel & S. Zakeeruddin
EPFL, Lausanne, Switzerland
C. Barolo
University of Turin, Italy
A. Di Carlo
University of Rome, Italy
Y. Cao
HGLASS, Lausanne, Switzerland
Y. Lafon & E. Gay
Euroquality, Paris, France

7DV.2.17  Community Solar as an Innovative Business Model for Building-Integrated Photovoltaics
A. Stauch & P. Vuichard
University of St.Gallen, Switzerland
7DV.2.22 Management of about 50% PV Electricity for Switzerland
U. Muntwyler & E. Schüpbach
BUAS, Burgdorf, Switzerland

7DV.2.23 PV Tender Program in Japan: Its Design and Impacts on Cost Reduction
K. Sugibuchi, I. Kaizuka, H. Yamaya, T. Ohigashi & O. Ikki
RTS Corporation, Tokyo, Japan

7DV.2.24 Policy and Statement of Certified PV Module Registration in Taiwan
C.-C. Chou
ITRI, Hsinchu, Taiwan

M.I. Rabiou
CODDAE, Niamey, Niger

7DV.2.26 Energy for Sustainable Development in Niger: Successes, Challenges and Possible Way Forward
I. Ali Soumana
ANETIC, Niamey, Niger

7DV.2.27 Solar Energy and Sustainable Development in Morocco
M. Boussetta & R. El Bachtiri
USMBA, Fez, Morocco
Y. Chaibi
ENSAM, Meknes, Morocco

7DV.2.28 Neighbourhood Influence and Social Acceptance of PV Systems in Rural Developing Communities
N. Opiyo
Ulster University, Londonderry, United Kingdom

7DV.2.29 How Mobile Money Platforms and Other Innovative Technologies Have Stimulated Energy Revolution in Rural Sub-Saharan Africa
N. Opiyo
Ulster University, Londonderry, United Kingdom

7DV.2.31 Binomial Rate for Low Voltage Consumers in Brazil: Conditions for Successful Implementation
R. Teixeira, R. Flora Calili & D. Louzada
PUC-Rio, Rio de Janeiro, Brazil

7DV.2.23 SocialRES Project - Fostering Socially Innovative and Inclusive Strategies for Empowering Citizens in the Renewable Energy Market of the Future
S. Caneva & P. Alonso
WIP Renewable Energies, Munich, Germany
I. Lizarralde
ESTIA Institute of Technology, Côte Basque, France
V. Kromrey
Bodensee-Stiftung, Radolfzell, Germany
N. Zwangerman
Adelphi, Berlin, Germany
E. Schmid
Fondazione Icons, Lodi, Italy
E. Denny
Trinity College Dublin, Ireland
S. Saludes
CARTIF, Valladolid, Spain
I. Lacoste
I-ENER, Saint-Jean-Pied-de-Port, France
R. Ruiz
ENERGETICA, Valladolid, Spain
N. Brito-Jorge
GoParity, Lisbon, Portugal
K. Harder
Abundance, London, United Kingdom
V. Segon
REGÉA, Zagreb, Croatia
F. Ciausiu
Tractebel, Bucharest, Romania

7DV.2.34 Newcoming Citizen Photovoltaic Projects in Ile-de-France
C. Blondel, T. Le Roux, N. Harada, B. Blanc, A. Le Huérou, F.-M. Blondel, G. Hervé & G. Macchi
Sud Paris Soleil, Cachan, France
D. Lincot
IPVF, Palaiseau, France

7DV.2.35 Multi-Criteria Decision Analysis for Renewable Energy Applications
A. Boumaiza, A. Sanfilippo & N. Mohandes
QEERI, Doha, Qatar
7DV.2.36 **BIPVBOOST Project – Bringing Down Costs of Building-Integrated Photovoltaic (BIPV) Solutions and Processes Along the Value Chain, Enabling Widespread Implementation in Near Zero Energy Buildings (nZEBs)**

M. Machado & R. Alonso
Tecnalia, San Sebastián, Spain
F. Frontini & P. Bonomo
SUPSI, Canobbio, Switzerland
I. Weiss & P. Alonso
WIP Renewable Energies, Munich, Germany
E. Rico
Onyx Solar Energy, Avila, Spain
P. Alamy
ENERBIM, SEILH, France
A. Apraiz
Mondragon Assembly, Aretxabaleta, Spain
S. Pierret
Optimal Computing, Mons, Belgium
P. Macé
Becquerel Institute, Brussels, Belgium
S. Boddaert
CSTB, Sophia-Antipolis, France
J. Adami
Eurac Research, Bolzano, Italy
J. Payet
Cycleco, Ambérieu-en-Bugey, France
R. Baetens
3E, Brussels, Belgium
P. Stassen
Tulipps, Waalwijk, The Netherlands
U. Rühle
Flisom, Dubendorf, Switzerland
K. Viriden
Viriden + Partner, Zurich, Switzerland
M. Martínez
ISFOC, Puertollano, Spain
C. Pirotta
PIZ, Cosio Valtellino, Italy
M. Polo
COMSA, Munich, Germany
A. Haller
Ernst Schweizer, Hedingen, Switzerland

7DV.2.38 **EU-Comparison of the Economic Viability of Prosumer PV Systems**

Fraunhofer ISE, Freiburg, Germany

7DV.2.39 **MOST Project – Advanced Master’s Education Based on Smart Grid Technology**

S. Arancón, S. Caneva & M. Kovarova
WIP Renewable Energies, Munich, Germany
F. Pilo & S. Mocci
University of Cagliari, Italy
V. Efthymiou, A. Stavrou, G.E. Georgiou & C. Panayi
University of Cyprus, Nicosia, Cyprus
G.C. Christoforidis & I. Panapakidis
Western Macedonia University of Applied Sciences, Kozani, Greece
G. Heilscher & S. Hofbauer
Ulm University of Applied Sciences, Germany
A. Michiorri
MINES ParisTech, France
E. Loucaidou
Deloitte, Lemassol, Cyprus

17:00 - 18:30 **POSTER AWARDS WINNERS SESSION**

Chairperson:
Julio Cárabe
CIEMAT, Spain

Aiming to increase the visibility of poster awards winners and as a recognition to the quality of their presentation, the winners will have the opportunity to perform a 5 minutes presentation to the poster area audience during the closing visual session on Thursday from 17:00 to 18:30. Winning posters will be moved to the “Winners Wall” in the poster area and presentations will take place there.

The Poster Awards ceremony, when awards will be delivered, is scheduled for Friday morning on the occasion of the Conference Closing.

For more information on the Poster Area please refer to the Poster Guide or visit [www.photovoltaic-conference.com](http://www.photovoltaic-conference.com)
Global **TOP 10** Module Supplier

- **1 BNEF TIER** Module Manufacturer
- **TOP 10** Module Shipment Supplier in 2018 Globally
- **TOP 10** Module Manufacture Capacity Globally
- **TOP 50** Global New Energy Enterprise
- **TOP 5** PV + Agriculture Project Provider in China
- **TOP 10** Solar EPC Enterprise in China

**High-efficiency module up to 430 W**

[Website: www.talesun.com]
[Email: sales@talesun.com]
Barlas, T.R., 1BV.3.42
Barolo, C., 7DV.2.16
Barone, V., 5CV.4.4
Barreau, N., 3BV.2.45, 3BV.1.18, 3AO.8.5, 3BV.2.57
Barretta, C., 4CO.4.2, 4AV.1.16
Barth, N., 5CV.4.9, 4AV.1.41
Barth, V., 2DV.1.35, 2CO.9.5, 4AV.1.40
Bartha, J.W., 2DV.1.43
Barthe, B., 2DO.5.3
Bartoszewicz-Burczy, H., 7DV.2.15
Bartsch, J., 2CO.10.1, 2DO.5.5
Basaseeh, A., 4CO.2.1
Basnet, R., 2CV.2.2, 2CV.2.3
Basset, L., 2CO.10.6, 4AV.1.40
Battles, F.J., 5CV.4.21, 5DO.1.1, 5CV.4.45
Bätzner, D.L., 2BO.4.5, 2EO.1.3
Bauer, J., 2CO.12.2
Bauguen, E., 4AV.2.48, 4AV.2.56
Bauhuis, G.J., 5CV.3.62
Baumann, T., 4AV.2.34
Baumgartner, F.P., 4AV.2.34, 4DO.4.3
Bay, N., 2CV.2.100
Bazer-Bachi, B., 2DV.1.7
Bazkii, O., 4AV.2.23
Bechmann, S., 2DO.5.5, 2DO.5.1
Béchu, S., 3BV.1.12, 3BV.1.13, 3BV.2.57, 2DV.1.23
Beck, A., 1AO.3.2
Becker, C., 3CO.7.6
Becker, G., 7EO.3.5
Becker, A., 6BV.4.13
Bedrich, K.G., 4AV.2.28
Behrendts, H., 6CV.1.1
Behrens, G., 4AV.1.14, 6BV.4.5
Beinert, A.J., 4BO.11.1, 4CO.4.3
Beitel, C., 4AV.2.32
Bellanger, P., 3BV.2.45, 2DV.1.2, 2DO.5.3
Bellemare, L., 6CV.1.19
Bellenda, G., 6BV.4.6
Bellet, D., 2CV.2.91, 3BV.1.34, 1BV.3.23
Bellinguer, K., 5DO.2.4
Bellmann, M.P., 6BV.4.11
Belluardo, G., 5DO.1.3
Belyakov, O.A., 2CV.2.14, 2CV.2.18
Ben Slimane, A., 3BO.8.2, 3BV.2.57, 1AO.2.4
Benda, V., 5CV.4.42
Bengoechea, J., 4AV.1.31
Benguesmia, S., 2CV.2.89
Benharrat, L., 2DV.1.6
Benick, J., 3BV.2.46, 2BP.1.3, 2EO.1.4, 1AP.1.1
Benlarabi, A., 5CV.3.15, 5DO.1.4
Benmansour, M., 2AO.5.6
Bennacer, R., 6BV.4.32
Bennett, I.J., 2CO.10.1, 4CO.3.2, 4AV.1.49
Bercegol, A., 3CO.5.2, 3BO.8.2, 1AO.2.4
Berenguier, B., 1BO.10.1
Berg, A., 3BO.8.1
Berger, K.A., 6BV.4.7
Berghuis, W.-J.-H., 2CO.9.2
Bergmans, T., 5CV.4.7
Bermudez García, A., 5CV.3.64
Bernardis, S., 4CO.3.6
Bernhard, N., 2CV.2.54
Bernsen, O., 7DO.7.3
Berrian, D., 5CV.3.31
Berson, S., 3CO.6.4, 3CO.5.5, 3BV.2.15, 3BV.2.23
Bertani, D., 5BO.5.1, 5CV.4.4
Bervots, R., 1AP.1.2
Bessa, J.G., 5CV.4.31
Bessa, J.G., 5CV.4.23
Besseau, R., 4AV.2.49
Besseling, T., 4AV.1.50
Bett, A.W., 2EO.1.1
Betti, A., 5CV.3.14
Bettinelli, A., 2DV.1.35, 2CO.10.6, 4CO.3.6
Betts, T.R., 3BV.1.6, 4AV.1.24, 5DO.1.3
Beutel, P., 1AP.1.1
Beyer, H.G., 6CO.16.6
Bhang, B.G., 4AV.2.1, 6BV.4.9, 4AV.2.4, 5CV.4.18
Bhavsar, V., 1BV.3.37, 4AV.2.53
Bhoopathy, R., 4CO.1.4, 2CV.2.64
Bianchi, G., 3BV.2.35
Blanco, G.V., 2DV.1.54
Bidaud, T., 2CV.2.57, 3BV.2.57
Biel, T., 7DO.7.3
Biezemann, A.F.K.V., 3BV.1.33
Bila, M., 5CV.3.35
Bilousov, O., 3AO.9.2
Binetti, D., 4CO.1.1, 4AV.1.55
Binetti, S., 3BV.1.6, 3BV.1.27
Bing, J., 6BV.4.26
Birajdar, M., 5CV.4.14
Birik Jones, C., 4BO.13.1
Bishop, D.M., 1AO.1.4
Bittkau, K., 2DV.1.60
Bivour, M., 2DV.1.48, 2EO.1.4
Bizzarri, F., 2CV.2.74
Bizzini, O., 6BV.4.2
Bjørneklest, B., 6DO.9.2
Black, L., 2CO.9.2
Blagovest, M., 3BV.1.6
Blakers, A., 3CO.8.2, 2DV.1.49
Blakesley, J.C., 3CO.6.3, 4AV.2.10, 3CO.6.2
Blanc, I., 4AV.2.49, 4DO.4.5
Blanc, P., 5CV.4.40
Blanc, B., 7DV.2.34
Blanc-Pélassier, D., 2CO.9.1, 2DV.1.2
Blankemeyer, S., 6EO.2.4
Blasi, B., 1AO.3.1, 3BV.2.46
Bles, D.-J., 6BV.4.13
Blevin, T., 2CV.2.89
Blieske, U., 7EO.3.5, 5CV.4.38, 4AV.2.57
Bliss, M., 5DO.1.3
Bloch, L., 6CV.1.5
Blondel, C., 7DV.2.34
Blondel, F.-M., 7DV.2.34
Blum, N., 5DO.2.1
Boardman, J., 5BO.7.2
Bobeiko, E., 2DV.1.54, 3BV.2.54
Boccard, M., 2CO.10.1, 2CO.12.6, 3CO.7.5, 2CO.11.1, 3CO.8.1
Boddalert, S., 7DV.2.36, 6BV.4.6, 6BV.4.7
Bodeux, R., 3AO.8.5, 2BO.2.53
Bodlak, L., 2CO.10.3
Boero, M., 7DV.2.7
Bohnert, U., 4AV.2.15
Böhnisch, S., 3BV.1.38
Bokallic, M., 4BO.13.6
Bolen, M.L., 5CV.4.24
Böllinger, M., 4AV.2.37
Bolouky, M., 4AV.2.38
Bolt, P.J., 3BV.1.9, 3AO.7.6, 7DV.2.1
Bolt, P.J., 3AO.8.1
Bondarchuk, O., 3AO.9.3
Bonilla, J., 4AV.2.27
Bonilla Castro, J., 4AV.2.24
Authors Index

Duffy, E., 2DV.1.1
Duffy, N.W., 3CO.6.1
Duigou, T., 6EO.2.2
Dullweber, T., 2BO.2.1
Dumbrell, R., 2CO.12.4, 4CO.1.4
Dunderdale, C.W., 5BO.6.2
Dunlop, E.D., 4DP.1.1, 7DO.7.4, 3CP.1.4
Dupeyrat, P., 4CO.1.1, 4AV.1.18, 5DO.3.3
Dupré, O., 3CO.7.5, 2CO.11.1
Dupuis, J., 4CO.1.1, 4AV.1.18, 5DO.3.3
Durand, O., 1AO.3.2, 3BV.2.57
Dussouillez, M., 3CO.8.6
Duttagupta, S., 2EO.1.5
Duvoisin, 6BV.4.3
Dwivedi, Y., 1BV.3.39, 2DV.1.64
Dyskin, V.G., 1BV.3.38

E
Eberlein, D., 4AV.1.8, 2CO.11.4
Ebert, M., 4BO.11.2, 4BO.12.1, 4BO.13.2, 5CV.3.15, 5DO.1.4, 4AV.1.48
Ebert, C., 2DV.1.3
Ebner, R., 4AV.1.4
Ebong, A., 2DO.6.6
Ech-Chamikh, E.M., 1BV.3.45
Eder, G.C., 4BO.13.3, 4AV.2.46, 4BO.13.5, 6BV.4.7, 4AV.1.25
Edler, M., 4AV.1.25
Edler, M., 4BO.13.5
Edoff, M., 3AO.9.2, 3BV.1.9, 3AO.8.1, 3BV.1.32, 3AO.8.3, 3CP.1.1
Efinger, R., 2DO.5.5
Efthymiou, V., 7DV.2.39
Efurosinibana Attaye, D., 6BV.4.22
Ehrhardt, D., 1BV.3.25
Ehrlinger, M., 5DO.2.5
Einhaus, R., 6BV.4.11
Eisenlohr, J., 6DO.8.5
Eitner, U., 2DV.1.3
Eizinger, B., 5DP.2.3
Ekins-Daukes, N.J., 6EO.2.1, 3BO.8.1, 3BV.2.58
El Assali, K., 3BV.1.61
El Bachtiiri, R., 6CO.16.5, 7DV.2.27
El -Chami, L., 1AP.1.2
El Hajie, G., 4CO.1.1, 4AV.1.18
El Hussein, J., 3BV.1.53
El Khalfi, A.-I., 1BV.3.45
El Kissani, A., 1BV.3.46, 1BV.3.9, 3BV.1.61
Elmas, T., 5CV.3.9
El-Issa, A., 4BO.11.6
ElNosh, A., 4AV.2.21
Emamian, M., 5CV.4.28
Emanuel, G., 2BO.1.1
Emtsev, K., 2DV.1.41, 4AV.1.22, 2DV.1.57, 5CV.4.34
Ender, M., 2CV.2.83
Endrell, J., 6BV.4.25
Eo, Y.J., 3BV.1.4, 1BV.3.30, 3BV.1.37, 3AO.7.5
Eo, Y.J., 2CV.2.59
Eom, Y.-S., 4AV.1.51
Eraerds, P., 3AO.9.4, 3AO.7.1
Erath, D., 4CO.3.3
Erceg, M., 4BO.13.5
Ercelevi, A.C., 2DV.1.55
Eren, T., 2CV.2.83
Eriksson, A., 6BV.4.25
Ermachkhin, A., 2CV.2.8, 2CV.2.12, 2CV.2.47
Ernst, M., 3CO.8.2, 2DV.1.49
Es, F., 2CV.2.81
Escarré Palou, J., 6BV.4.3
Escoubas, L., 3BV.2.36
Escribano Troncoso, J., 6DO.8.4
Eskandari, A., 4AV.2.38, 5CV.4.28
Esposito, V., 6BV.4.13
Eswara, S., 2BO.4.6
Etarhouni, M., 5BO.5.6
Etcheber, A., 3BV.1.12, 2BV.1.13, 3BV.2.57, 2DV.1.23
Evstropov, V.V., 1AO.1.5, 3BV.1.55
Eymard, J., 2CO.10.6, 4AV.1.40

F
Faes, A., 2CO.10.1, 3CO.8.6, 4CO.3.2, 2BP.1.2, 4CO.4.5, 5CV.3.68
Fagerström, J., 6BV.4.31
Fairbrother, A., 4AV.2.30
Fall, N.C.Y., 3BV.2.24
Falsini, M., 4AV.2.26
Farhad, S.F.U., 1BV.3.44
Farias, G., 3BV.1.25
Farias Basulto, G.A., 4AV.2.12
Farina, F., 5CV.3.10
Farnung, B., 5BO.7.5
Fath, P., 2EO.1.1, 2CV.2.83
Faulwetter-Quandt, B., 2BP.1.4
Fave, A., 2CV.2.91, 3BV.2.50, 3BV.2.56
Favre, W., 2DV.1.35
Fedorov, V., 3BV.1.24
Fehrenbach, T., 2AO.6.2
Fehring, F., 6BV.4.5
Feifel, M., 3BV.2.57
Feijs, A., 2CO.10.1, 2CO.12.6, 2AO.6.5
Felder, T., 4AV.1.30
Feldmann, F., 2BO.2.3, 2BO.3.4, 2CO.12.5, 2BP.1.3, 2CV.2.56, 2EO.1.4
Fell, C.J., 3CO.6.1
Fell, A., 2DO.6.2, 2CO.12.5, 2BP.1.3
Fellmeth, T., 2BO.1.1, 2CV.2.98, 2CV.2.93, 5DF.2.4, 2EO.1.4
Feng, Z., 2EO.1.2
Feng, Y., 3AO.9.5
Feng, L., 4AV.1.14
Ferati, A., 3BV.1.7
Ferlay, N., 5CV.3.18, 5CV.3.9
Fernandes, P.A., 3AO.8.1
Fernández, E.F., 5CV.4.22, 5CV.4.23, 5BO.7.3, 5CV.4.31
Fernández, E., 7DO.7.3
Ferrada, P., 4AV.1.37
Ferrazza, F., 3BV.2.35
Ferreira, R., 6DO.9.5
Ferretti, N., 4BO.11.6
Fertig, F., 2AO.4.6
Feurer, T., 3AO.7.3, 3BV.1.26
Fiala, P., 3CO.8.1, 3CO.5.3
Fialho, L., 7DO.7.6
Fichtner, J., 2BO.1.5
Fiette, S., 5CV.3.54
Fievez, M., 3CO.5.5
Figgis, B.W., 5BO.7.1, 5CV.4.9, 5CV.3.15
Figgis, B., 5DO.1.4
Filipic, M., 2CO.12.6
Finsterle, T., 5CV.4.42
Fioretti, A.N., 2CO.10.1, 2CO.12.6, 2CO.11.1
Fischer, T., 4CO.3.3
Fischer, G., 2CV.2.55
Fischer, A., 2DV.1.51
Flade, F., 7EO.3.5
Flandi, L., 4AV.1.55
Flandre, D., 3BV.1.9, 3AO.8.1
Fledkerus, H., 3CO.6.6
Fló, A.S., 5CV.4.46
Flora Calili, R., 7DV.2.31, 7DV.2.11
Florides, M., 4AV.1.27
Flottemesch, R., 5CV.3.17
Fluri, V., 7DV.2.38
Fokuhl, E., 4BO.12.2, 4CO.3.3
Folkerts, W., 6DO.9.1
Fong, K.C., 2DV.1.17, 2DV.1.49
Fontanilles, D., 5CV.3.38
Forchhammer, S., 4CO.1.3, 5CV.4.37
Foss, S.E., 2DV.1.9, 2CV.2.9, 5CV.4.25
Foti, M., 2DV.1.35
Foucaran, A., 1AO.3.5
Fourdrinier, L., 3AO.8.1
Fourmeau, M., 2CV.2.23
Fournond, E., 2DV.1.59
Fournier, O., 1AO.2.4
Fox, B., 4DO.4.3
Fraisse, S., 5CV.3.52
Frammelsberger, W., 2BO.4.5, 2EO.1.3
Francisco, V., 6DO.8.4
Frank, A., 4AV.2.3
Franzetti, I., 2BO.4.2
Frearson, L., 5DO.1.5, 7DO.7.2, 5CO.13.3, 5DO.1.2
Frégnaux, M., 3BV.1.12, 3BV.1.13
Freitas, S.R., 6DO.9.5
French, R.H., 5BO.5.1, 4AV.2.30
Freund, T., 3BV.1.62
Frey, A., 3CP.1.3
Friedmann, G., 7DO.7.3
Friedrich, J., 2CV.2.17, 2CV.2.19, 2AO.5.2
Friend, M., 3BV.2.17, 3BV.2.8, 3BV.2.10
Friesen, G., 4CO.2.5
Frischknecht, R., 4DO.4.5
Frontini, F., 7DV.2.36, 6BV.4.6, 7DV.2.1
Frühauf, F., 2AO.4.6
Fu, F., 3CO.8.1, 3CO.5.3
Fu, G., 3BV.1.38
Fuentes Cano, A., 7DV.2.1
Fuerholz, U., 6BV.4.3
Fuhrmann, B., 3CP.1.3
Fujimoto, S., 1AO.2.2
Fujisawa, H., 1AO.2.2, 2DV.1.37
Fung, T.H., 2DO.6.5, 2CV.2.82, 2CV.2.60
Fuster, D., 3AO.9.3
Fuster Roig, V., 6CO.16.4

G

Gad, A., 2CO.10.1, 2DV.1.67
Gademmer, A., 1AO.3.5
Gagara, L., 3BV.1.24
Gaiaschi, S., 3BV.1.12
Gaiddon, B., 5CV.3.52
Gaisberger, P., 6BV.4.7, 5DO.2.5
Gaisberger, L., 5DO.2.5
Galagan, Y., 3CO.6.6
Gali, R.S.R., 4AV.2.18, 4CO.2.6
Gallardo-Saavedra, S., 4AV.1.38, 4AV.2.20
Galleano, R., 5CV.3.3
Galley, S., 4AV.2.56
Gambogi, W.J., 4AV.1.30
Gao, M., 4AV.1.54
Gao, P., 1BV.3.14
Gao, J.Q., 4CO.1.6
Gao, H., 3BV.2.28
Gapanovich, M.V., 3BV.1.23
Garcia, J.M., 3AO.9.3
Garcia Goma, E., 4AV.2.16
Garg, V., 3BV.1.17
Garoum, M., 5CV.4.44
Garralaga Rojas, E., 5CO.14.2
Garrison, R., 3BV.2.51
Gasparotto, S., 6DO.8.5
Gauvain, J., 6EO.2.2, 6DO.9.4
Gaury, J., 2CO.10.1
Gautron, E., 3BV.2.57
Gay, E., 7DV.2.16
Ge, J., 3BV.2.13
Gebhardt, P., 4AV.1.28, 4AV.1.29, 4BO.12.2
Gecke, R., 4CV.3.8
Geerlings, L.J., 3CO.8.5
Gehrke, K., 6BV.4.23, 6DO.9.6
Geipel, T., 2CO.11.4, 4BO.12.2, 4CO.3.3
Geissbühler, J., 4CO.3.2, 2BP.1.2, 2CO.10.2
Geißendörfer, S., 6CV.1.1
Geißler, S., 2BP.1.4
Geizubis, A., 3BV.1.51
Gendry, M., 3BV.2.50
Gensowski, K., 2DO.5.5
Gentile, A., 2CV.2.64
Georgiou, G.E., 5BO.5.2, 4AV.1.27, 5CV.3.11, 5CV.4.32, 4AV.1.42, 7DV.2.39, 3BV.1.56, 3BV.2.58
Gerardi, C., 2CV.2.74, 2DV.1.35
Gerber, A., 3BV.1.6
Gerczek, C., 6CO.15.2
Gereige, I., 4CO.2.1
Gerlich, F., 5CV.3.68
Gero Ciudad, R., 6CO.16.4
Gerritsen, E., 2CO.10.6, 4AV.1.40, 6BV.4.34
Gerthsen, D., 3AO.9.4
Gevaerts, V.S., 3BV.1.33
Gevorgyan, S.A., 3BV.1.6
Gewohn, T., 4BO.11.3
Geyer, D., 5DO.3.2, 4CO.4.1
Gfeller, D., 4DO.4.2
Ghali, H.A., 1BV.3.10
Ghanam, M.Y., 2DV.1.36
Ghennioui, A., 5CV.4.44
Ghorbani, E., 3AO.9.4
Ghosh, M., 2CV.2.16
Ghotge, R., 6CO.15.6
Giglia, V., 2DV.1.59
Gigoni, L., 5CV.3.14
Giona, S., 6BV.4.13
Giosa, E., 5CV.3.17
Girard, R., 5DO.2.4
Giteau, M., 1AO.3.2
Glatthaar, M., 2CO.10.1, 2CV.2.94, 2CV.2.86
Glick, A., 4AV.2.29
Glunz, S.W., 2BO.1.1, 5DP.2.4, 2BP.1.3, 2EO.1.4, 2CV.2.94, 2CV.2.86
Gnocchi, L., 4AV.1.34
Go, H.J., 4AV.2.1
Go, H.J., 6BV.4.9, 4AV.2.4
Goaer, G., 2DV.1.7
Godefroy, V., 6DO.9.3
Goffard, J., 1AO.3.2, 3AO.8.3
Gogna, P., 3BO.8.6
Gok, S., 2CV.2.83
Goldmaier, A., 6EP.1.1
Golovanov, B.I., 3BV.1.31
Goncalves, A.-M., 2DV.1.23
Goncalves, J., 6DO.8.1
Gong, H., 4AV.1.54
Gong, J., 2E0.1.2
Gonzáles, H., 6BV.4.7
Gonzalez, S., 4DO.4.3
González-Díaz, B., 3BV.2.17, 3BV.2.8, 3BV.2.10
González-Pérez, S., 3BV.2.17, 3BV.2.8
Authors Index

González-Rebollo, M.A., 4AV.1.38, 4AV.2.20
Goraya, B., 7EO.3.3
Gordillo, G., 3BV.2.16
Gordon, I., 2CO.10.1, 2BO.1.4, 2CO.12.6, 3AO.8.1, 2DV.1.36, 2CO.9.3, 2DV.1.66, 2DV.1.68
Gorge, A.-L., 6DO.9.3
Gorle, D.K., 2CV.2.46
Gostein, M., 5CV.3.10, 5CV.3.17
Gotoh, K., 2CV.2.45
Gottschalk, R., 3BV.1.6, 4AV.1.24, 5CV.3.15, 5DO.1.4
Götz, D., 5CV.3.43, 1BO.9.5
Götz, M., 6BV.4.23
Goudsward, I., 4AV.1.50
Gouillart, L., 3AO.8.1, 3AO.8.3
Govaerts, J., 4AV.2.17, 5DP.2.2, 1AP.1.2
Goverde, H., 6CO.15.1, 5DP.2.2
Gracia Amillo, A.M., 4AV.2.19, 5CV.3.7, 7DO.7.4
Gradauskas, J., 1BV.3.2
Graditi, G., 4DO.4.1
Graf, A., 2AO.4.5
Granados, L., 6BV.4.26
Grand, P.P., 2DV.1.7, 2CV.2.55, 2DV.1.23
Grandidier, J., 3BO.8.6
Grange, B., 2BO.3.5
Grätzl, M., 7DV.2.16
Grau-Luque, E., 4AV.2.18, 4CO.2.6
Graupner, U., 2DV.1.63
Green, M.A., 1BO.10.3, 3BO.8.1, 3CO.5.1, 3AO.8.6, 3BV.2.59, 7EP.2.2
Greiner, M., 7EP.2.1
Grellier, C., 6CV.1.2
Gremenok, V.F., 1AO.3.3, 3BV.1.23, 1BV.3.38, 3BV.1.31
Greulich, J., 2DO.6.4
Grieb, M., 4AV.1.36
Grischke, R., 4CO.3.2
Grommes, E., 7EO.3.5
Gropius, H., 4AV.1.58
Grossberg, M., 3BV.1.27
Große, T., 2CV.2.50
Großer, S., 2CV.2.50, 4BO.13.2
Grottke, M., 6CO.16.1
Grousset, A., 4AV.1.55
Grübel, B., 2BO.2.3
Gruginskie, N., 5CV.3.62
Grundmann, M., 1BV.3.20
Grüneis, M., 4AV.1.14
Grunow, P., 4AV.1.36
Grünsteidl, S., 4AV.1.33, 3BV.1.25
Gschwind, B., 4DO.4.5
Gu, X., 4AV.2.30
Gu, W., 2CV.2.75
Guastella, S., 5CV.4.4
Guc, M., 3BV.2.11
Gudopp, D., 5CV.4.14
Gudzev, V., 2CV.2.47
Guemri, M., 6CV.1.7
Guérin de Montgareuil, A., 6CV.1.19
Guerra, G., 5CV.4.20
Guerrero-Lemus, R., 3BV.2.10
Gueunier-Farret, M.E., 2DV.1.2, 3CO.8.3, 1AO.2.6, 3BV.2.60
Gueymard, C.A., 5CV.3.34, 5DO.1.1
Guillaume, P., 2DV.1.52
Guillermoles, J.-F., 3BV.1.48, 3BV.1.13, 3BV.8.4, 1AO.3.2, 3CO.5.2, 3BO.8.2, 1AO.2.4
Guillerez, S., 6EO.2.2, 5CV.4.33
Guillo Lohan, B., 2CV.2.52
Guillot-Deudon, C., 3AO.8.5
Guina, M., 3BV.1.50
Güler, S., 2DV.1.55
Gunawan, O., 1AO.1.4
Gunda, T., 5CV.4.24
Guo, Y., 4AV.1.54
Guo, W., 3BV.2.26
Guo, F., 2CO.12.1
Gupta, R., 4CO.3.4, 4AV.2.22
Gupta, I., 3BV.1.60
Gusak, V., 3AO.8.1
Guter, W., 3BO.8.1
Gutiérrez, V., 4AV.1.37
Gutiérrez, J.R., 5CV.4.2
Gutjahr, A., 2BO.4.3, 2BO.2.5
Gutlapalli, V.R., 3AO.7.2
Gutschner, M., 7DO.7.3
Guzman Razo, D.E., 5CV.3.1
Gwak, J., 3BV.1.4, 2CV.2.59, 1BV.3.30, 3BV.1.37, 3AO.7.5
H

Haghighi, Z., 1BO.9.6, 6DO.8.3
Hahn, G., 2BO.1.5, 2CV.2.95, 2AO.4.5
Hahn, H., 5CV.3.43
Hähnel, A., 2CV.2.50
Hakenberg, P., 4AV.2.57
Hakka, F., 3BV.1.18
Halbaß, K., 2CV.2.78
Halbich, M.-U., 2CO.9.6
Haililovic, S., 5CV.3.1
Hallais, G., 3BV.2.49
Hallam, B., 2CV.2.2, 2CO.11.3, 2DO.6.1, 2AO.4.3
Hallbeck, S., 6BV.4.13
Haller, A., 7DV.2.36
Halm, A., 4AV.1.61
Halm, J., 1AO.3.4, 1AP.1.3
Halwachs, M., 5CV.3.3
Hamada, K., 3CO.5.4
Hamada, N., 3BV.1.63
Hameiri, Z., 2CO.12.4, 2CV.2.7, 4CO.1.4, 2CV.2.64
Hamelmann, F.U., 4AV.1.14
Hamer, P., 2AO.4.3
Han, H., 2BO.3.6
Han, D., 2DO.6.6
Han, J.H., 3BV.1.40
Hanifi, H., 5CV.3.43, 4CO.3.1
Hanke, B., 6CV.1.9, 6CO.16.1, 6CV.1.17
Hannappel, T., 1AO.1.2, 3BV.2.47, 3BV.1.52
Hansson, R., 3BV.2.55
Hao, X., 1BO.10.3, 3BV.1.30, 3AO.8.6, 3BV.2.59
Hao, X., 3BV.2.26
Harada, T., 2DV.1.15
Harada, N., 7DV.2.34
Harder, N.-P., 4AV.2.17, 5DP.2.2
Harder, K., 7DV.2.33
I

Ibrahim, E.A., 5CV.3.45
Ichikawa, Y., 2DV.1.38, 2BO.4.4
Ighodaro, A.O., 6EP.1.1
Ikubu, S., 3CO.5.4
Ikidiyaou, Y., 1BV.3.45
Ilkki, O., 7DV.2.23
Illich, P., 6BV.4.7
Ilse, K., 5BO.7.1, 4BO.11.5, 4AV.1.60

J

Jaeckel, B., 4BO.11.2, 4BO.12.1, 4CO.3.1, 4AV.1.48
Jafari, S., 2CV.2.7
Jaffré, A., 3BV.2.49
Jaffré, A., 3CO.8.3
Jäger, K., 3CO.7.6
Jäger-Waldau, A., 7EO.3.1
Jahelka, P., 3BO.8.6
Jahn, M., 2BO.3.4

Jahn, M., 2BO.10.3, 3BV.1.30, 3AO.8.6
Huang, W.-C., 3BV.1.11
Huang, C.-J., 2DV.1.69
Huang, J.-Y., 3BV.2.12
Huang, Q., 2CV.2.72
Huang, S., 2BP.1.5
Hubbard, S.M., 1BV.3.22
Huber, M., 2CV.2.90
Hübner, S., 2CV.2.90
Huerta, H., 6CO.15.5
Huet, L., 5DO.2.6
Hughes-Riley, T., 1BO.9.2
Huhn, V., 5CV.4.29
Huhtamäki, T., 1AO.3.4
Hülsmann, P., 4AV.1.28
Hummel, S., 5DO.3.2, 4CO.4.1
Hung, J.-Y., 2CV.2.73
Hunger, R., 3AO.9.4, 3AO.7.2
Hünig, R., 3BV.1.19
Hünekes, C., 7DO.7.3
Huang Nguyen, V., 3BV.1.34
Hüpfes, J., 2DV.1.60, 3CO.8.5
Huschenhöfer, D., 5DO.3.2
Huyeng, J.D., 2BO.3.4, 2DV.1.3, 2BO.4.2
Hwang, H., 2CV.2.33
Hyun, J.Y., 2BO.3.6

Imai, Y., 2DV.1.37
Imalka jayawardena, K.D.G., 3CO.6.3
Imanishi, S., 3BV.1.64
Imbuluzketa, G., 1BV.3.51
Imenes, A.G., 6BV.4.7
Infante Ferreira, C., 6DO.8.3
Inghoven, P., 5CV.3.36
Ingenito, A., 2BO.4.6, 2BO.2.4, 3CO.8.1
Inoue, M., 3BV.1.63
Irwin, N.P., 1AO.2.3
Isabella, O., 2CO.10.1, 1BO.9.6, 3AO.8.2, 2CO.12.6, 1AO.2.1, 4AV.1.45, 5DO.3.1, 6DO.8.3, 2BO.4.1
Ishii, H., 6BV.4.17
Ishizuka, S., 3AO.9.1
Ishmuratov, P., 2DV.1.41, 2DV.1.63
Isoaho, R., 3BV.1.50
Issa, E., 2CV.2.94, 2CV.2.86
Ito, A., 2CV.2.61
Itten, R., 4DO.4.4
Iluvara, D., 2CV.2.74
Ivanov, G., 2DV.1.57
Iwamoto, K., 2CV.2.62
Izquierdo-Roca, V., 3BV.2.11
Izzi, M., 2CV.2.74, 3BV.2.61

Jahn, R., 1AO.3.1
Jain, A., 4BO.13.1
Jakiela, R., 3BV.1.51
Jander, S., 3AO.7.2
Jang, J., 5CV.3.33, 5CV.3.30
Jang, S.H., 2AO.6.6
Jang, B., 3BV.1.49
Janke, S., 2CO.11.2
Jankovec, M., 4CO.4.2
Jansen, J., 1BV.3.25
Jansma, T., 5DO.3.5
Jansen, G.J.M., 4CO.2.3, 2DO.6.3, 2CO.12.3
Jänz, S., 2AO.6.2
Järvelä, M., 5CV.4.1
Järwali, D.K., 3BV.2.30
Jaubert, J.-N., 4AV.1.55
Javaid, T., 2BO.1.1
Jawinski, T., 1BV.3.20
Jeangros, Q., 2BO.4.6, 3CO.7.5, 3CO.8.1, 3CO.5.3
Jenke, G., 2CV.2.102
Jensen, I.T., 2CV.2.9
Jen, N.J., 1AO.1.4
Jöeng, W.-L., 3BV.1.15, 3BV.1.16
Jöeng, L., 3BV.1.4, 1BV.3.30, 3BV.1.37, 3AO.7.5
J. J., 4AV.2.51
J. I., 2BO.1.2
J. L., 4AV.2.30
Jian, C., 3BV.2.26
Jiang, Y., 3BO.8.1
Jiang, F., 2DO.5.2
Jiang, J., 4AV.2.51
Jie, J., 2DV.1.18
Jimenez, C., 2CV.2.91, 3BV.1.34
Jimenez, P.A., 5DO.2.3
Jiménez Franco, A., 5CV.4.38
Jiménez-López, J., 4AV.1.38, 4AV.2.20
Jimeno-Martín, M.M., 4AV.1.38, 4AV.2.20
Jimeno, J.C., 5CV.4.2
Jimeno, J., 5CO.13.4
Jin, H., 2CV.2.5
Jin, X., 3AO.9.4
Jøt, C.K.S., 3BV.2.30
Jo, H., 4AV.2.1, 6BV.4.9
Jo, H., 4AV.2.4
Joanny, M., 6EO.2.2, 6DO.9.4
Jol, J., 3AO.7.2
John, J.J., 6BV.4.10, 4AV.2.21
John, J., 2CO.9.3
John, M., 2CV.2.54
Johnson, J., 4DO.4.3
Johnson, M., 6BV.4.14
Jomard, F., 3BV.1.12, 3BV.2.57
Jones, T.W., 3CO.6.1
Joo, J., 4AV.1.51
Joo, J., 2DO.1.5
Joo, S., 2EO.1.1, 2CV.2.83
Jose, M., 3CP.1.2
Jost, M., 5CV.3.68
Jouhara, H., 6BV.4.11
Jourdan, J., 2DV.1.56
Jü, Y.-C., 2CV.2.33
Jubault, M., 7EO.3.3, 3AO.8.1, 3AO.8.3, 3AO.7.4
Juhl, M.K., 2AO.4.1
Juellen, A., 3BO.8.2
Jülicher, S., 4AV.2.30
Jung, J.Y., 2DV.1.45
Jung, S.H., 3BV.1.49
Jung, S.H., 2DV.1.11, 1BO.10.6, 4AV.1.59
Jung, I., 2CV.2.59
Jung, Y., 2CV.2.77
Jung, M., 4DO.4.1
Kaaya, I., 4AV.1.26
Kacharia, M., 1BV.3.22
Kafle, B., 2DV.1.1, 2CV.2.87
Kagan, S., 5CV.3.17
Kaharudin, D., 5CV.4.27
Kai, W., 4AV.1.3
Kai, Z., 7DV.2.23, 7EO.3.1
Kalboussi, Y., 2DV.1.2
Kaliojärvi-Viljakainen, H., 5CV.4.12
Kaltenbach, T., 4AV.1.32
Kalyuzhnyy, N.A., 1AO.1.5, 3BV.1.55
Kamada, R., 3BV.1.64
Kamal, K., 2DV.1.64
Kamibeppu, S., 2AO.5.5
Kamikawa-Shimizu, Y., 3AO.9.1
Kamino, B.A., 3CO.8.6, 3CO.8.1
Kaminski-Cachopo, A., 2CV.2.52, 2DV.1.2, 1BV.3.23, 2BO.3.3
Kamioka, T., 2AO.6.1, 2CV.2.53, 1BO.10.4
Kamp, M., 2DO.5.5
Kang, G.-H., 2CV.2.21, 2CV.2.33
Kang, M.G., 2DV.1.11, 4AV.1.59
Kang, Y., 2CV.2.43, 2CV.2.77, 4AV.2.54, 2BO.3.6
Kang, J., 5CV.3.30
Kang, H.K., 3BV.1.49
Kang, D., 2CV.2.5
Kang, D., 2BO.3.6
Kang, D.-W., 2CV.2.31
Kang, J.-W., 4AV.1.9
Kapil, G., 3CO.5.4
Kapranov, V., 1BV.3.50
Kapur, J., 4CO.4.4
Karabanov, A.S., 2CV.2.12
Karabanov, S.M., 2CV.2.14, 2CV.2.18, 2CV.2.12
Karabanov, A.S., 2CV.2.14, 2CV.2.18
Karaösz, K., 7DO.7.3
Karas, J., 2CO.10.4
Karikoski, T., 4BO.13.1
Kariniotakis, G., 5CO.13.2, 5DO.2.4
Karou, F., 5CO.14.4
Karsenti, A., 3CO.7.6
Karuturi, S., 2AO.6.3
Kato, S., 2CV.2.45
Kato, Y., 1AO.2.2
Kato, K., 6CV.1.16
Kato, T., 3BV.1.64
Katsaounis, T., 4CO.2.1
Katz, E., 3CO.7.6
Kaufmann, K., 4CO.3.5, 2EO.1.6
Kaule, F., 2CV.2.24
Kaune, G., 3BV.1.7
Kaushal, Y., 5BO.5.5
Kawats, T., 2AO.6.1
Kawayama, I., 2CV.2.61
Ke, Y., 2CV.2.72
Kebe, C.M.F., 4AV.1.10
Kechoane, M., 2DV.1.25
Kedou, R., 2BO.3.4
Kedir, C., 4AV.2.32
Keefers, M.J., 3BO.8.1
Keizman, D., 2CV.2.65
Keller, J., 3AO.9.2, 3BV.1.32, 3AO.8.3
Kempe, M.D., 4CO.4.4, 4AV.2.30
Kenny, R.P., 4AV.2.18, 4AV.2.19, 4CO.2.6
Keohane, S., 2AO.5.4
Kermadi, S., 2DV.1.25
Kersten, F., 2AO.4.6
Kessels, W.M.M., 2CO.9.2
Kessler, F., 3BV.1.10, 3AO.7.4
Kester, J., 5CO.14.3
Keutgen, J., 3AO.9.4
Kezzoula, F., 2DV.1.73
Khairyat, A., 4CO.2.1
Khan, M.Z., 4BO.11.5
Khan, M.U., 2CV.2.82
Khan, N.W., 2DV.1.1
Khan, M.U., 2DO.6.5
Khan, F., 4AV.1.56, 1BV.3.13
Khanfara, M., 6CO.16.5
Khanha, S., 1BV.3.37, 4AV.2.53, 1BV.3.41
Khoos, Y.S., 4AV.2.28
Khoos, K., 2DV.1.72
Khoroshko, V.V., 1BV.3.38, 3BV.1.31
Kiaee, Z., 2BO.3.4
Kida, Y., 2DV.1.5
Kiefer, K., 5BO.7.5, 4AV.2.15
Kikkert, B.W.J., 2DV.1.62
Killenberg, A., 4AV.2.52
Killingo, S., 5CV.3.1
Kim, S.H., 4AV.2.33
Kim, J.T., 6BV.4.7
Kim, D.H., 2CV.2.43, 2CV.2.77, 4AV.2.54, 2BO.3.6
Kim, K.S., 5CV.3.15, 5DO.1.4
Kim, Y.B., 2DV.1.11, 1BO.10.6
Kim, J., 2DV.1.11, 1BO.10.6, 4AV.1.59
Kim, K.-J., 6BV.4.27
Kim, K.-S., 3BV.1.49
Kim, K., 3BV.1.4, 2CV.2.59, 1BV.3.30, 3BV.1.37, 3AO.7.5
Kim, M., 2CO.11.3, 2DO.6.1, 3BV.2.29
Kim, J.-H., 3BV.1.49
Kim, G., 2CV.2.32, 2AO.6.6
Kim, D.-S., 4AV.1.9
Kim, S., 3AO.9.1
Kim, J.H., 4AV.2.30
Kim, J.H., 4AV.1.56, 1BV.3.13
Kim, S.-H., 2DV.1.45
Kim, Y.-J., 4AV.1.9
Kim, K.-P., 3BV.1.15, 3BV.1.16
Kim, S.M., 2DV.1.11, 1BO.10.6, 4AV.1.59
Kim, G.-G., 4AV.2.1, 5CV.4.18
Kim, S.-M., 3BV.1.49
Kim, J.-H., 5DO.2.3
Kim, K.-H., 2DV.1.21
Kim, C.G., 3BV.1.40
Kim, D., 6BV.4.27
Kim, J.H., 4AV.2.33
Kim, Y., 4AV.1.59
Kim, J.H., 3BV.2.29
Kim, J., 3BV.2.29
Kindl, M., 6CV.1.21
King, R.R., 1BO.10.2, 1AO.2.3
Kioowski, O., 3AO.9.4, 3BV.1.7, 3AO.9.3
Kirk, A.P., 3BO.8.6
Kirste, L., 2AO.6.2
Kitze, M., 4AV.1.33
Klinder, J.-P., 2DV.1.2, 3CO.8.3, 1AO.2.6, 2DV.1.21, 3BV.2.49, 3BV.2.60
Kleiman, R.N., 3BV.2.51
Kleinschmidt, P., 1AO.1.2, 3BV.2.47
Klement, P., 6CV.1.17
Klenk, R., 4AV.2.12, 3BV.1.25
Kloos, M
Klipp, B
Klimm, E
Kneller
Kluge, T
Kof
Kojima, N
2BV
Kocka, J
Konovalov
Koné, J
Konagai, M
Komatsu, Y
Ko, J.W.
2AV.1.32
Klipp, B.
2CV.2.20
Klitzke, M., 2DV.1.1
Kloos, M. J. H., 3CO.8.5
Klöter, B., 2DO.5.6
Kluge, T., 2BO.2.6
Kluska, S., 2BO.2.3
Knecht, R., 4AV.2.34
Kneller, J.W.E., 4AV.2.10
Ko, J.W., 4AV.2.54
Ko, S.H., 2CV.2.33
Kobayashi, T., 3BV.1.39
Kobor, D., 3BV.2.25, 3BV.2.24
Kocka, J., 2AO.6.5
Kodolbas, A.O., 3BV.1.6
Koepe, R., 2CV.2.24
Koffman-Frisch, Knecht, A., 3BV.2.1
Köhler, G., 2CV.2.50
Köhnen, E., 3CP.1.2
Koida, T., 2DV.1.42, 3AO.9.1
Kojima, N., 3BO.8.5, 1BV.3.1, 6EO.2.3
Kojima, H., 2CV.2.62
Kojima, T., 2AO.5.5, 2CV.2.15
Komarala, V.K., 2DV.1.46
Komatsu, Y., 4BO.12.5
Konagai, M., 2AO.6.4, 2DV.1.38, 6BV.4.18, 2BO.4.4
Kondratenko, O.S., 1BV.3.42
Koné, J.-L., 5CV.3.54
Kong, J., 3BV.2.35
Königstein, C., 7DV.2.7
Konovalov, I., 1AO.1.3
Kötges, M., 4BO.11.3, 6EO.2.4, 4BO.13.2, 7DV.2.1
Koppe, T., 2CV.2.92, 3BV.1.38
Korevaar, M., 5CV.4.7
Korn, R., 2CV.2.90
Korovin, A.V., 1BV.3.42
Korte, L., 2CO.10.1, 3CO.7.6, 2CO.12.6, 6EO.2.4, 3CP.1.2
Koschnick, F., 2BO.1.5
Kößler, T., 2BO.4.5, 2EO.1.3
Kost, C., 7DV.2.38
Kotipalli, R., 3AO.8.1
Kotova, N.V., 1BV.3.42
Kotsovos, K., 4CO.2.1
Kottantharayil, A., 2DV.1.68
Koutsourakis, G., 3CO.6.3, 4AV.2.10, 3CO.6.2
Kovacic, M., 3BV.1.9, 3AO.8.1
Kovarova, M., 7DV.2.39
Kozawa, M., 1AO.2.2, 2DV.1.37
Kolozinsky, M., 3BV.2.19
Kraft, A., 4AV.1.8, 2CO.11.4, 4CO.3.3
Kräling, U., 4AV.2.15
Kramer, R., 2BO.4.5, 2EO.1.3
Kranert, C., 2CV.2.17, 2AO.5.2, 2CV.2.16
Kratzert, P., 3AO.9.4, 3AO.7.2
Krause, M., 3AO.9.4
Kraus, M., 3AO.9.4
Krauß, K., 2CV.2.100
Krc, J., 3BV.1.9, 2DV.1.47, 3AO.8.1
Kreinin, L., 3CO.7.6
Krenckel, P., 2CV.2.15, 2AO.5.3
Krenz, A., 7EO.3.5
Kret, J., 3BV.1.53
Krishna, J., 2AO.4.1
Krieg, A., 2CV.2.98, 4CO.3.3
Krieg, K., 2DO.5.1
Kreylos, V., 3BV.1.38
Krose, E., 2CV.2.78
Kromrey, V., 7DV.2.33
Kroon, J.M., 3BV.1.6, 3CO.8.5
Krotkus, A., 3BV.1.51
Krueger, W., 5CO.14.2
Krüger, J., 6EO.2.4
Kruse, C., 2BO.2.1
Ku, C.-H., 2DV.1.13, 2CV.2.73
Ku, B., 5BO.6.1
Kuan, T.-M., 2CV.2.42, 4AV.1.19
Kuan, C.-H., 3CO.6.5
Kubicek, B., 4AV.1.42
Kubo, H., 6EO.2.5
Kuczynski, M., 2CV.2.19
Kudo, H., 2AO.5.5, 2CV.2.15
Kuhn, T.E., 6DO.8.5
Kuhn, P., 5DO.2.1
Kühnel, M., 6CV.1.9
Kulagina, N.A., 1BV.3.38
Kumar, S., 4CO.3.4, 4AV.2.22
Kumar, V., 3BV.1.21, 1BV.3.36
Kumar, N.M., 1BO.10.2
Kumar, A., 5BO.7.4
Kumar, N.M., 5CV.4.41
Kumar, S., 4DO.4.3
Kumar, J., 4DO.4.3
Kumar, A., 3BV.2.30
Kumm, T., 6CV.1.1
Kunaif, K., 5CV.4.27
Künecke, U., 3BV.1.25
Kunert, R., 2CV.2.20
Kung, B.-C., 2DV.1.69
Kunz, O., 4CO.1.4, 5CV.4.2
Kuo, T.-W., 2DV.1.13, 2CV.2.73
Kuo, C.-W., 2CV.2.42, 4AV.1.19
Kuo, P.-T., 3CO.6.5
Kuo, M.-T., 2DV.1.69
Kupka, R., 2CV.2.17
Kurinji, M., 4AV.1.12
Kurokawa, Y., 2CV.2.45
Kuruganti, V., 2CV.2.44
Kuske, J., 2DV.1.43
Kutsukake, K., 2AO.5.5
Kutsukake, K., 2AO.5.3
Kwarikunda, N., 2CV.2.51
Kwon, J.-D., 2CV.2.31
Kwon, O., 4AV.2.1, 6BV.4.9, 4AV.2.4
Kwon, Y.K., 4AV.2.4
Kyprianou, A., 5CV.4.32
Kyanaki, N., 4AV.1.24
La Ferrara, V., 3BV.2.54
Laarabi, B., 5BO.7.2
Lachenal, D., 2CO.10.1, 2BO.4.5, 4CO.3.2, 2CO.12.6, 2EO.1.3
Lachhab, S.E., 5CV.3.45
Lachowicz, A., 3BV.1.28, 2DV.1.61
Lackner, D., 1AP.1.1
Lacoste, I., 7DV.2.33
Lad, M., 4AV.2.53
Lafon, Y., 7DV.2.16
Lafond, A., 3AO.8.5
Lafont, O., 1BO.10.1
Lafosse, X., 3BO.8.2
Lagerstedt, T., 1BO.9.3
Lagunas, A.R., 4AV.1.31
Lagut, F., 5CV.3.52
Lai, C.-H., 3BV.1.11
Lajoie-Mazenc, E., 5CV.4.3
Lakhdar Chaouche, S., 2CV.2.91, 3BV.1.34
Lakhoyan, L.M., 5CV.4.11
Lalanne, P., 5CV.3.58
Lamanna, E., 3BV.2.54
Lambert, F., 5DP.2.1
Lambert, A., 5DP.2.2, 5BO.6.3
Lambertz, A., 2DV.1.53, 2CO.12.6, 6EO.2.4, 2DV.1.60
Lan, C.-W., 2AO.5.1, 2CV.2.76
Lan, D., 3CO.5.1
AUTHORS INDEX

Liu, Z., 3BV.2.59
Liu, H., 5BO.7.4
Liu, W., 2EO.1.2
Liu, S., 2DO.6.1, 2AO.4.3
Liu, J.-J., 1AO.3.6
Liu, R., 2BP.1.5
Liu, Z., 2BP.1.5, 2BO.1.4
Liu, C.-E., 2AO.5.1
Liu, C., 2EO.1.2
Liu, C., 2DV.1.39
Liu, B., 2DV.1.39
Liu, L., 2DV.1.39
Liu, X., 5DO.2.2
Liu, C., 2DV.1.26, 2CV.2.63
Livera, A., 5BO.5.2
Lizarralde, I., 7DV.2.33
Ljunggren, M., 6BV.4.25
Lo, C.-C., 2DV.1.69
Löckinger, J., 3AO.7.3, 3BV.1.26
Löffler, J., 2BO.1.6, 2BO.4.3, 2CO.12.3, 2BO.2.5
Lohmüller, S., 2BO.1.3
Loiko, V.A., 1BV.3.8
Loiko, N.A., 1BV.3.8
Lok, H., 5DO.3.5
Lollini, R., 6BV.4.13
Lombardo, S., 2CV.2.74
Lombez, L., 1BO.10.1, 1AO.3.2, 3CO.5.2, 3BO.8.2, 2CV.2.57, 1AO.2.4
Lomuscio, A., 3BV.1.36
Long, W., 2DV.1.39, 2CO.11.5
Longeaud, C., 1AO.2.5, 3CO.5.2, 3CO.8.3
Lontchi, J., 3BV.1.9, 3AO.8.1
Lopes, T.S., 3AO.8.1
López, G., 5CV.4.21, 5DO.11, 5CV.4.45
Lopez Lorente, J., 5DO.2.2
Lopez-Garcia, J., 4AV.2.18, 4AV.2.19, 4CO.2.6
Lorenz, R., 4CO.3.3
Lorenz, A., 2DO.5.1
Lorfeuvre, C., 2DO.5.3
Losse, M., 2DV.1.24
Lotter, E., 3BV.1.6, 3BV.1.7
Loubat, A., 3BV.1.12
Loucaidou, E., 7DV.2.39
Lourdoussos, S., 3BV.2.55
Louzada, D., 7DV.2.31
Lovati, M., 5CV.3.36, 6BV.4.13, 6CO.15.4
Lövenich, W., 2CO.9.6
Lu, C., 2DV.1.20
Lu, X., 2BO.1.6
Lu, C.-H., 2CO.11.5
Lucas, C., 6CV.1.7
Luchies, J.M., 2BO.3.2
Luciano de la Cruz, L., 6BV.4.16
Luderer, C., 2DV.1.48
Luiz Cyrino Oliveira, F., 7DV.2.11
Lundberg, O., 3AO.9.2, 3AO.7.2
Luo, H., 3AO.9.5
Luo, W., 5BO.7.4
Luscuere, P., 1BO.9.6
Lutter, E., 7DO.7.3
Luxembourg, S.L., 3CO.8.5, 2BO.2.5
Lyu, Y., 4AV.2.30
Ma, Q., 2CV.2.85
Ma, L., 2BP.1.5
Ma, Z., 2CV.2.75
Ma, Z., 2CV.2.75
MacAlpine, S., 5DO.3.4
Macchi, G., 7DV.2.34
Maccio, B., 2CO.9.2
Macdonald, D., 2CV.2.2, 2BO.2.2, 2CV.2.3, 2BP.1.1, 2CV.2.5, 2AO.4.1
Macé, P., 7DV.2.36, 7DV.2.1
Machado, M., 7DV.2.36, 6BV.4.6, 6BV.4.7, 6DO.8.4, 6DO.8.6
Machirant, A., 1BO.9.3
Mack, S., 2EO.1.4
MacMaster, S., 4AV.1.30
Madugula, S., 2CV.2.83
Maede, S., 6CV.1.9
Maeda, T., 3BV.1.20
Maeda, K., 2DV.1.15
Maeno, S., 6E0.2.5
Magiera, R., 3BV.1.38
Magorian-Friedlmeier, T., 3BV.1.19
Mai, Y., 1BV.3.47
Maiberg, M., 3AO.9.4, 3AO.8.4
Maier, A., 4CO.1.2
Mainz, R., 3AO.9.4
Maintanova, N., 6CO.16.1
Majorel, M., 3BV.2.23
Mäkelä, S., 3BV.1.50
Mäkinen, P., 1AP.1.3
Makita, K., 1AP.1.1
Makrides, G., 5BO.5.2, 5BO.5.1, 4AV.1.27, 5CV.3.11, 5CV.4.32
Malen, R., 2AO.5.4
Malerba, C., 3BV.2.61
Mallick, S., 4AV.1.47, 4AV.2.31
Malvisi, E., 3BV.1.57
Malvoni, M., 5CV.4.26, 6CV.1.8, 5CV.4.41
Mamontova, I.B., 1BV.3.42
Mamykin, S.V., 1BV.3.42
Manceau, M., 3CO.6.4, 3CO.5.5, 3BV.2.15
Mandal, S., 2DV.1.46
Mandorlo, F., 2DV.1.10
Maneal, V., 6EO.2.2, 5CV.3.64
Manganiello, P., 6CO.15.1, 5DP.2.2, 1AP.1.2
Manshanden, P., 2CV.2.49, 2BO.4.3
Mansour, D.E., 4AV.1.31, 4BO.13.4
Mantel, C., 4CO.1.3, 5CV.4.37
Manzolini, G., 7EO.3.4
Marathey, P., 1BV.3.37, 1BV.3.41
Marchand, J.-F., 7DV.2.5
Marchat, C., 2DV.1.2, 1AO.2.6
Marciano, J., 3BV.1.12
Marczak, R., 2CV.2.99
Mariotti, F., 5DO.1.3
Marquez-Prieto, J., 3AO.9.4
Martel, B., 2CO.9.1, 2CV.2.89, 2BO.3.3
Martí Vega, A., 1AO.1.1, 7DO.7.6
Martin, A., 5CV.4.29
Martín Chivelet, N., 6BV.4.7, 5CV.4.21, 5DO.1.1, 5CV.4.45
Martineau, D., 3BV.2.20
Martínez, F., 3BV.1.53
Martínez, M., 7DV.2.36
Martínez Sanchez, J.F., 5DP.2.4
Martínez-de-Pison, F.J., 5CV.3.7
Martínez-Sacristan, O., 4AV.1.38, 4AV.2.20
Marzo, A., 5DO.1.1
Maslov, A., 2CV.2.8, 2CV.2.47
Masolin, A., 6BV.4.7
Masse de la Huerta, C., 1BV.3.23
Masson, G., 7EO.3.2, 7EO.3.1
Masuda, A., 4BO.12.5
Masuda, T., 6BV.4.18, 6EO.2.3, 3BV.1.63
Authors Index

Naber, R.C.G., 2BO.3.2
Naeem, T., 4BO.12.2
Nagai, T., 2AO.6.1
Nagel, H., 2EO.1.4, 2CV.2.94, 2CV.2.86
Nagel, T., 2CV.2.86
Nägelein, A., 1AO.1.2
Naghavi, N., 3AO.8.1, 3AO.8.3
Nair, P.R., 1BV.3.48
Nairi, A., 4AV.1.31
Najafi, M., 3CO.7.3, 3CO.6.6, 3CO.8.5
Nakada, K., 3BV.1.39
Nakamichi, Y., 2CV.2.62
Nakamura, K., 2DV.1.40, 2AO.6.1, 2CV.2.53, 1BO.10.4
Nakanishi, H., 2CV.2.61
Nakano, Y., 3BV.1.46, 3BV.1.48
Nakhimovich, M.V., 5CV.3.67
Nam, W., 2CV.2.13
Nandakumar, N., 2EO.1.5
Nandy, M., 3BV.2.47
Napoli, S., 4AV.2.30
Nardin, G., 5CV.3.68
Narjis, A., 1BV.3.9
Narvesjö, J., 5CV.4.36
Naumann, V., 4BO.1.11.5, 2CO.12.2, 4AV.1.60
Nay Wunn, H., 1BV.3.49
Nayak, M., 2DV.1.46
Nazarzadeh, M., 2BO.3.4
Nazeeruddin, M.K., 3BV.2.60
Ndiaye, A., 4AV.1.10
Ndiaye, M.L., 4AV.1.10
Ndioukane, R., 3BV.2.25, 3BV.2.24
Neirac, F.-P., 5CO.13.2
Nekarda, J.-F., 2CV.2.93, 2CV.2.100, 2DV.1.23
Nelias, D., 2CV.2.23
Neretnieks, P., 6BV.4.25
Neubert, S., 3BV.1.6, 2CO.9.4
Neubert, B., 2CV.2.78
Neugebohrn, N., 6BV.4.23, 6DO.9.6
Neuhaus, D.-H., 4BO.11.1, 4AV.1.8, 4CO.2.4, 4AV.1.20
Neuhaus, H., 4AV.1.15
Neuhauser, L., 4AV.2.3, 4AV.1.7, 4AV.2.46, 4BO.13.5, 4AV.1.23
Ney, L., 2DO.5.1
Ng, C.H., 3CO.5.4
Nguyen, N., 3CO.6.4, 3BV.2.23
Nguyen, H.T., 2CV.2.3, 2BP.1.1
Nguyen, V.H., 2DV.1.2, 1BV.3.23
Nguyen, S.K., 6DO.8.6
Nguyen, V.H., 2CV.2.45
Ni, Z., 2DV.1.8, 2DV.1.9, 2DV.1.18
Niazi, K.A.K., 4AV.1.6
Nicolay, S., 2BO.4.6, 3CO.8.6, 2CO.9.5, 2BP.1.2, 2CO.10.2, 2BO.2.4, 3CO.8.1
Niedermeier, K., 7DV.2.38
Niesen, O., 2CV.2.74
Niemi, E., 3AO.8.1
Nies, T.P., 3AO.9.4
Niewelt, T., 2CV.2.56, 2AO.4.1
Niki, S., 3AO.9.1
Nikitina, V., 4CO.3.3
Nikolaeva, A., 3AO.9.4
Nikad, N., 4DO.4.3
Nishihara, T., 2DV.1.40, 2AO.6.1, 1BO.10.4
Nishimura, K., 3CO.5.4
Nishimura, T., 3BV.1.63
Nishinaga, J., 3AO.9.1
Nishiwaki, S., 3AO.7.3, 3BV.1.26
Nisi, A., 4AV.2.55
Ni, Z., 2CV.2.72
Nivelle, P., 1AP.1.2
Nkhieli, L., 1BV.3.9, 3BV.1.61
Noda, Y., 2AO.5.5
Nogay, G., 2BO.4.6, 2BO.2.4, 3CO.8.1
Noge, H., 6BV.4.18, 2BO.4.4
Noh, J.H., 1AO.1.4
Nold, S., 2EO.1.1
Nonnenmacher, H.-J., 6EO.2.4
Norris, H., 5DO.1.5
Nowal, S., 2DV.1.73
Nowri, B., 5DO.2.1
Novikov, G.F., 3BV.1.23, 3BV.1.31
Nowak, S., 2DO.1.73
Nowoczyn, Z., 3AO.7.2
Nowotnick, M., 2CO.11.4
Noy, A., 2DV.1.24
Nüesch, F., 3BV.2.20
Nyapshaev, I., 2DV.1.41, 2DV.1.44, 2DV.1.63

O
Oberbeck, L., 7EO.3.3
Oberholzer, S., 7DO.7.3
O’Brien, G., 4AV.2.30
Ocaña, L., 3BV.2.17, 3BV.2.8, 3BV.2.10
Odin, I.N., 3BV.1.23
Oehler, F., 1BO.10.1
Oehrle, K., 2DO.5.1
Øgaard, M.B., 5CV.4.25, 5CV.4.30, 5BO.5.4
Ogura, A., 2DV.1.40, 2DV.1.14, 2AO.6.1, 2CV.2.53, 1BO.10.4
Oh, S.-Y., 5CV.3.15, 5DO.1.4
Ohdaira, K., 4BO.12.5
Ohigashi, T., 7DV.2.23
Ohland, J., 3BV.1.25
Ohno, A., 2AO.5.5
Ohshita, Y., 2DV.1.40, 2AO.6.1, 2CV.2.53, 1BO.10.4
Okel, L.A.G., 2CO.12.3, 3CO.8.5
Okoso, K., 6EO.2.5
Oku, T., 2CO.10.5
Okullo, W., 2CV.2.51
Ollala, C., 5DO.3.4
Oliveau, C., 2BO.3.3
Oliveira Martins, A.C., 6DO.8.2
Olivieri, L., 5CO.14.4
Olsen, E., 2CV.2.6, 2CV.2.9, 5CV.4.46
Omanakuttan, G., 3BV.2.55
Omaezic, A., 4AV.2.46, 4BO.13.5
Ong, S., 5DO.1.5
Onishi, K., 2AO.6.1
Onoye, T., 6CV.1.16, 6CO.15.1
Opiyo, N., 7DV.2.28, 7DV.2.29, 5CV.3.44

P
Pacebutas, V., 3BV.1.51
Padhamnath, P., 2EO.1.5
Pae, S.R., 1AO.1.4
Paetel, S., 3AO.9.4, 3BV.1.19
Paetzold, U.W., 3CO.7.4
Palitzsch, W., 4AV.2.52, 7DV.2.1
Palm, J., 3AO.9.4, 3AO.7.1, 4AV.1.33
Pan, Z., 4AV.1.30
Pan, B.-Y., 1AO.3.6
Panapakidis, I., 7DV.2.39
Panayi, C., 7DV.2.39
Pander, M., 4BO.11.2, 4BO.12.1, 4BO.13.2, 4AV.1.48, 4AV.1.60
Pandya, V., 4AV.2.53
Paneliya, S., 1BV.3.37, 4AV.2.53
Panos, A., 4AV.1.17
Papageorgiou, G., 3BV.1.38
Papaiz, L., 6BV.4.13
Papanastasiou, P., 4AV.1.42
Papargyri, L., 4AV.1.42
Papel, P., 2BO.4.5, 4CO.3.2, 2EO.1.3
Paquez, X., 4AV.1.50
Paracchino, A., 3CO.8.6
Parashar, P., 1AO.1.6
Paraskeva, V., 3BV.1.56, 3BV.2.58
Paratte, V., 2CO.11.1, 3CO.8.1
Parikh, H.R., 4CO.1.3, 5CV.4.37
Parisi, J., 3BV.1.25
Park, N., 3BV.2.29
Park, J.H., 3BV.1.4, 2CV.2.59, 3AO.7.5
Park, H., 4AV.2.54
Park, C.-S., 4AV.1.9
Park, H., 2BO.3.6
Park, J.H., 1BV.3.30, 3BV.1.37
Park, S.J., 2CV.2.43, 4AV.2.54, 2BO.3.6
Park, N., 5CV.4.18
Park, S.Y., 4AV.2.1, 6BV.4.9, 4AV.2.4, 5CV.4.18
Park, M.A., 2CV.2.32, 2AO.6.6
Park, J.C., 2CV.2.13
Park, B.K., 3BV.1.40
Park, J., 6BV.4.27
Park, Y., 6BV.4.36
Parol, F., 5CV.3.9
Parola, S., 1AO.3.5, 3BV.1.53
Parolini, F., 6BV.4.6
Paschen, J., 2CV.2.93
Pasmans, P., 4CO.4.5, 4AV.1.50
Pasquinelli, M., 3BV.2.36
Paszuk, A., 3BV.2.47, 3BV.1.52
Patel, N., 5CO.13.6
Patel, B., 1BV.3.41
Patriarce, G., 3BV.2.50
Patzold, M., 4CO.3.5, 2EO.1.6
Paul, N., 2CV.2.57
Paulauskas, T., 3BV.1.51
Pause, F., 7DV.2.5
Pavanello, D., 5CV.3.3, 3BV.1.6, 4AV.2.18
Paviet-Salomen, B., 2CO.10.1, 3CO.8.6, 4CO.3.2, 2BP.1.2, 2CO.12.6, 2CO.10.2
Payet, J., 7DV.2.36
Payeur, M., 4AV.2.49, 4DO.4.5
Payne, D., 2DO.6.5, 2CV.2.82, 2CV.2.60
Paynter, C., 7DO.7.2
Pearce, P., 3BO.8.1
Pearsall, N.M., 5CV.4.13
Peibst, R., 2CV.2.4, 2BO.3.1, 2BO.2.1, 6EO.2.4, 2BO.2.6
Peillon, S., 1BV.3.11
Pelletier, D., 2AO.5.6
Pen, K.-H., 1AO.1.6
Peng, S., 3BV.1.38
Peng, S., 2CV.2.72
Peng, C.-W., 2CO.11.5
Perez, M.D., 3BV.2.1
Perez, R., 6CO.16.2
Perez, M., 6CO.16.2
Perez Carballo, A., 6BV.4.13
Perez-Basante, A., 5CO.13.4
Perez-Lopez, P., 4AV.2.49, 4DO.4.5
Pernau, T., 2CV.2.101
Pernoud, F., 2CO.10.6, 4CO.3.6
Perret-Aebi, L.-E., 6BV.4.3
Perrin, R., 5CV.4.3
Persat, N., 7DV.2.7
Persson, C., 3BV.1.32
Petersson, A.M., 5CV.4.36
Petersson, J., 5CV.4.36
Petit, M., 6CV.1.4
Petri, D., 5CV.3.68
Petrosyan, H.S., 5CV.3.65
Pezzato, L., 4AV.2.55
Pflugradt, N., 6CO.15.3
Pfreundt, A., 4CO.4.3, 4AV.1.20
Phang, S.P., 2CV.2.2, 2BO.2.2, 2CV.2.3, 2BP.1.1
Philipp, D., 4AV.1.28, 4AV.1.29, 4BO.12.2, 4BO.13.4
Piatlitskaya, T.V., 1AO.3.3, 1BV.3.38
Piazza, V., 3BV.2.50
Piazzia, A., 5CV.3.14
Pickel, T., 4CO.1.2, 4AV.2.9, 5BO.7.6
Pickenhain, R., 1BV.3.20
Pierret, S., 7DV.2.36
Pierro, M., 6CO.16.2
Pierron, P., 3BV.2.36
Pieters, B.E., 6EO.2.4
Pilo, F., 7DV.2.39
Pinault-Thaiery, M.A., 3BV.2.57
Pinter, G., 4BO.13.5
Pinto, S., 4AV.2.47
Pipkova, A.S., 1AO.3.3
Piquemil, M., 1AO.3.5
Pirotta, C., 7DV.2.36
Pistor, P., 3AO.9.4, 3BV.2.11
Pitaval, S., 5CO.13.2
Pitta Bauermann, L., 4AV.1.31, 4BO.13.4, 4CO.3.3
Pitteloud, S., 2BO.4.5, 2EO.1.3
Pittet, S., 6BV.4.3
Pitz-Paal, R., 5DO.2.1
Plag, F., 4AV.2.5, 4CO.1.5
Platzer-Börmann, C., 3AO.9.2
Pletz, B., 4AV.1.7
Plissonnier, A., 5CV.4.10
Ploss, B., 1AO.1.3
Po, R., 3BV.2.35
Podlowski, L., 4BO.11.6, 4AV.1.36
Politi, B., 1AO.3.5
Pollard, M.E., 2DO.6.5
Polly, S.J., 1BV.3.22
Polman, A., 2CV.2.60
Polo, J., 5CV.4.21, 5DO.1.11, 5CV.4.45
Polo, M., 7DV.2.36
Polo López, C.S., 6BV.4.7
Polojärvi, V., 3BV.1.50
Polverini, D., 7DO.7.4
Polzin, J.-I., 2BP.1.3, 2CV.2.56, 2EO.1.4
Pomaska, M., 2CO.10.1, 2DV.1.53, 2DV.1.60
Pongthanacharoenkul, N., 4AV.1.36
Poodt, P., 3CO.6.6
Poortmans, J., 4DO.4.6, 5DP.2.2, 2DV.1.71, 1AP.1.2, 2CO.9.3, 2DV.1.66, 2DV.1.68
Pop, S.C., 4CO.4.4
Popescu, F., 6CV.1.6
Posada, J., 2DV.1.7
Pospischil, M., 2BO.1.11, 2DO.5.1
Potlog, T., 3BV.1.24
Pouloupolous, C., 4AV.2.48, 4AV.2.56
Poulsen, P.B., 4CO.1.3, 5CV.4.37
Powalla, M., 3AO.9.4
Praher, P., 5DO.2.5
Prajapati, A., 2CV.2.65
Prakoso, A.B., 2DV.1.20
Preu, R., 2DO.5.1
Preußner, T., 2CV.2.92
Prieur-Vernat, A., 4AV.2.49
Primerose, A., 5CV.3.6
Prince, M.G., 2DV.1.3
Procé Moya, P.A., 2CO.10.1, 3AO.8.2, 2CO.12.6
Proietti, D., 2CO.10.1
Ptak, A.J., 3BO.8.3
Puel, J.-B., 3BO.8.2, 1AO.2.4
Puerta, X., 7DV.2.14
Punamiya, V., 5BO.6.3
Pushko, S.V., 5CV.3.67
Putthen-Veettil, B., 2DO.6.5
Puttkammer, P., 5CO.14.3
Pyatlitski, A.N., 1AO.3.3, 1BV.3.38
Pysch, D., 2CV.2.100
Qian, J., 3CO.8.2
Qian, H., 2DV.1.9, 2DV.1.18
Qian, X., 2CV.2.75
Qiao, Z., 2BP.1.5
Qiu, D., 2DV.1.53
Qu, M., 2CO.11.5
Raappana, M., 3BV.1.50
Rabenok, E.V., 3BV.1.23, 3BV.1.31
Rabiou, A., 6BV.4.28
Rahmoun, K., 2CV.2.58
Rakitić, V., 3BV.1.31
Rakotoniaina, J.P., 4AV.2.55
Ramírez Pérez, E.A., 3BV.2.16
Ramina, G., 3BV.2.54
Ramspeck, K., 2CV.2.98, 2CV.2.97
Ransome, S., 5BO.5.2, 5CV.4.35
Ranta, S., 6CO.15.5
Rayault, E., 3BV.2.53
Ras, R.H.A., 1AO.3.4
Rasool, S., 3BV.2.41
Ratschinski, I., 3AO.7.2
Rau, B., 5CV.4.29
Rau, U., 2DV.1.67
Rauer, M., 2CO.12.1
Rauschen, I., 5BO.7.5
Raval, M.C., 2CV.2.83
Ravanbach, B., 6CV.1.9
Ravi, S., 3CO.6.3
Ray, A., 4AV.2.53, 1BV.3.41
Raybaud, B., 6BV.4.12
Razera, R.A.Z., 3CO.8.1, 3CO.5.3
Razongles, G., 3BV.1.6
Razuvaev, A., 1BV.3.50
Razzaq, A., 2CO.9.3, 2DV.1.66
Unger, E., 7DO.7.6, 3CO.7.6, 3BV.2.6
Unold, T., 3AO.9.4
Upadhyaya, D.C., 3BV.2.30
Urraca Valle, R., 5CV.3.7
Usami, N., 2CV.2.45, 2AO.5.5, 2CV.2.15, 2AO.5.3
Usatii, I., 2BV.1.54, 3BV.2.54
Utsunomiya, S., 2DV.1.5

V
Vaduva, D., 5CV.3.34
Vagapova, N.T., 5CV.3.67
Vaicikauskas, V., 1BV.3.2
Vaillon, R., 3BV.1.53
Valckenborg, R.M.E., 6BV.4.7, 4CO.2.2
Valencia, D., 6DO.8.4
Valentini, M., 3BV.2.61
Valkealahti, S., 5CV.4.12, 5CV.4.8, 5CV.4.1
Valle, N., 2BO.4.6
Valverde, A., 4AV.2.6
Van Aken, B.B., 4CO.2.3, 4CO.2.2, 2CO.12.3, 5DO.3.5
van de Kar, R., 5CO.14.3
van de Loo, B.W.H., 2BO.1.6
van Deelen, J., 3BV.1.9, 3AO.8.1
van den Brand, J., 6BV.4.7
Van den Brande, N., 1BV.3.25
van den Bruele, F.J., 3AO.7.6
van den Dobbelsteen, A., 6DO.8.3
van der Heide, A.S.H., 4DO.4.6, 4AV.2.17, 5DP.2.2, 1AP.1.2
van der Poel, E., 6BV.4.21
van der Vleuten, M., 3CO.7.3
van der Werf, D., 6DO.9.1
Van der Woude, D., 5CV.3.3
Van Durme, K., 1BV.3.25
Van Dyck, R., 1AP.1.2
van Dyk, E.E., 2CV.2.51, 5BO.6.2
van Erven, R.A.J.M., 4AV.1.39, 2CV.2.102
van Hooff, T., 6DO.8.1
Van Iseghem, M., 5CV.4.3, 5BO.5.1, 4DP.1.2
van Leest, R., 3CP.1.3
van Maris, V., 3AO.9.4
van Mechelen, X., 5CV.4.7
Van Mele, B., 1BV.3.25
van Nierop y Sanchez, C., 1BO.9.6
van Nieuwenhoven, Q., 6BV.4.4, 5BO.6.3
van Sark, W.G.J.H.M., 5CV.4.13, 5CV.3.13, 5BO.5.1, 6BV.4.21, 5DO.3.6
van Slooten, F., 5CV.4.13
van Wijk, A.J.M., 6CO.15.6
Vandervelde, T.E., 3BO.8.6
Vanstraelen, L., 7DV.2.5
Varache, R., 2CO.10.6, 2DV.1.56, 2DV.1.59
Vardanyan, A.A., 5CV.4.11
Vardanyan, R.R., 5CV.3.65
Varshney, U., 2AO.4.3, 2CV.2.82
Vartiainen, E., 7EO.3.2
Vaskelien, K., 7DV.2.5
Vastmans, L., 1AP.1.2
Vasudevan, R., 2CO.10.1, 2DV.1.52
Vauhe, L., 3CO.8.3
Vauthelin, A., 3BV.1.53
Veau, A., 2DV.1.2, 2DO.5.3, 2BO.3.3
Veeken, T.P.N., 2CV.2.60
Veenstra, S.C., 3CO.7.3, 3CO.6.6, 6BV.4.4, 3CO.8.5
Vega de Seoane, J.M., 6BV.4.13, 1BV.3.51
Vehse, M., 6BV.4.23, 6DO.9.6, 2CV.2.102
Vehreberg, V., 3CO.8.8
Veirman, J., 2AO.5.6, 2DV.1.59
Vela, N., 5CV.4.21, 5DO.1.1, 5CV.4.45
Veldhuijzen, L.W., 4AV.1.39, 2CV.2.102
Velisphic, E., 2CV.2.24
Venema, P.R., 2BO.1.6
Verbistkiy, V.N., 2DV.1.44
Vergnaud, E., 6BV.4.12
Verhees, W., 3CO.6.6
Verissimo Mesquita, L., 4BO.13.4
Verlinden, P.J., 2EO.1.2
Verma, A., 3BV.2.20
Vermang, B., 3AO.8.1
Vernay, C., 5CO.13.2
Veronese, E., 7EO.3.4
Versluis, F., 2CO.10.1
Vettori, M., 3BV.2.50
Vicari Stefani, B., 2CO.11.3
Victoria, M., 7EP.2.1
Vidal de Oliveira, A.K., 5BO.6.4, 5CV.4.6
Vidal Lorbada, R., 3BV.1.7, 3BV.1.3, 3BV.1.22
Vidaurrazaga Temez, I., 4DO.4.3
Vignal, R., 3AO.8.1
Vigneron, J., 3BV.1.12, 3BV.1.13
Vikhrov, S.P., 2CV.2.12, 2CV.2.47
Vincent, L., 3BV.2.49
Virgus, Y., 1AO.1.4
Viriden, K., 7DV.2.36
Virtuani, A., 4BO.12.4, 6DO.8.2, 4AV.1.34, 5CV.4.33
Virtuoso, J., 3AO.9.3
Vishnyakov, N., 2CV.2.12, 2CV.2.47
Visoly-Fisher, I., 3CO.7.6
Visser, L., 5CV.3.13
Vlieg, E., 5CV.3.62
Voarino, P., 5CV.3.3, 5CV.3.64
Vogt, M.R., 4BO.11.3
Vogt, L., 4CO.2.4
Voicu, N.E., 4CO.3.2, 4CO.4.5, 4AV.1.50
Volk, M., 4AV.2.57
Völker, R., 6CV.1.1
von Maydell, K., 6CV.1.9, 6CO.16.1, 6CV.1.17
von Wencskern, H., 1BV.3.20
Voronenko, Y., 4BO.13.3, 4AV.1.25
Voroshazi, E., 2CO.10.1, 4DO.4.6, 4AV.2.17, 5DP.2.2, 1AP.1.2
Vorster, F.J., 2CV.2.51
Vroon, Z., 3AO.8.2
Vuichard, P., 7DV.2.17
Vukovic, M., 5CV.4.46

W
Waack, E., 3BV.1.25
Wächter, R., 3AO.9.3, 3BV.1.62
Wada, T., 3BV.1.20
Wägele, L.A., 1BV.3.20
Wagner, R., 6BV.4.28
Wagner, P., 2CO.12.6
Wahl, S., 2CV.2.96
Wakita, R., 2CV.2.53
Walaska, P., 2CV.2.97
Wall, T., 7DO.7.3
Walter, D., 2DV.1.49
Walter, D.C., 2CV.2.101, 2AO.4.4
Walter, T., 3BV.1.7, 3BV.1.3, 3BV.1.22
Walter, A., 3CO.8.6, 3CO.8.1
Wan, Y., 2AO.6.3
Looking for outstanding performance?
COME VISIT US AT BOOTH E2!
PARALLEL EVENTS

For more information please refer to
www.photovoltaic-conference.com/programme/parallel-events
PARALLEL EVENTS

The EU PVSEC Parallel Events are open to all registered Conference Participants of the EU PVSEC 2019.

For detailed information and programme please visit www.photovoltaic-conference.com/programme/parallel-events.

Monday, 09 September 2019

14:30 - 17:00
French National Day - Highlighting French PV Innovation

13:30 - 17:30
Trends in PV Development – Self-Consumption and Innovative Distributed Applications

Tuesday, 10 September 2019

08:30 - 12:30
Eco-Design, Eco Labeling, Green Public Procurement – Sustainability Leadership for the Terawatt Age

08:30 - 12:30
Research meets Business – Solar Industry Forum

13:30 - 17:00
Photovoltaics | Forms | Landscapes - Energy as a Landscape Infrastructure

13:30 - 18:30
Research meets Business – Solar Industry Forum

17:45 - 20:30
New Solutions of Energy

Wednesday, 11 September 2019

08:30 - 12:30
Innovations in Photovoltaic Materials

08:30 - 12:30
Research meets Business – Solar Mobility Forum

13:30 - 15:00
Probabilistic PV Production Forecasts: Technics and Use-Cases

16:00 - 18:30
The EU Support Instruments – Unlocking Developing Markets

Thursday, 12 September 2019

08:30 - 12:30
BIPV – Moving into the Next Phase

10:10 - 12:10
Standardization of the Protocols for Emerging PV Technologies

15:15 - 18:30
Advanced PV Energy Rating for Emerging Technologies

More information on the following pages.
French National Day - Highlighting French PV Innovation

Overview of the French PV Innovation: Roadmap, Market and Policies, and Technical Achievements

Day: Monday, 09 September 2019
Time: 14:30 - 17:00
Site: EU PVSEC at Marseille Chanot Convention and Exhibition Centre, Marseille, France
Room: Auditorium 2 Callelongue Gradin, first floor
Access: Registration free of charge but mandatory via https://registration.n200.com/survey/3pdbus8hks87to

This workshop will present the main research, development and innovation activities in France. It will start with a brief overview of the current market situation, the main policy issues and the ambitious goal around 40 GW stated for 2028. Then, it will address all the aspects of the innovation process, from basic and applied research carried out within the main research institutes (IPVF and INES), to the last innovative results obtained by the main stakeholders, upstream of the value chain with the equipment and module manufacturers, and downstream with developers, SMEs and start-ups.
PARALLEL EVENTS

Trends in PV Development – Self-Consumption and Innovative Distributed Applications

jointly with the International Energy Agency Photovoltaic Power Systems Programme (IEA PVPS) – IEA PVPS Task 1 in cooperation with IRENA

Day: Monday, 09 September 2019
Time: 13:30 - 17:30
Site: EU PVSEC at Marseille Chanot Convention and Exhibition Centre, Marseille, France
Room: Auditorium 5 Morjou, first floor
Access: Open to all Conference participants (on days registered)

While distributed PV represented one third of global PV installations in 2018, it is poised to develop fast in the coming years under new policies and adequate regulatory frameworks. Self-consumption policies are evolving towards more complex and decentralized regulations allowing collective and virtual self-consumption, while innovative business models allow to rethink electricity production and consumption.

This event will first discuss the development of the PV market, and the impact of policies on the speed at which PV could develop. Will policies continue to shape the market and especially long-term targets? How are self-consumption policies developing and what does that mean for the energy transition? Are electricity markets adapted?

As an official event of the EU PVSEC 2019, this PVPS Programme Workshop is jointly organised by IEA - International Energy Agency and the EU PVSEC. Partners: SET-Plan Action 4, Self-Consumption Initiative, PVP rosumer4Grid Horizon2020 Project.

Programme Outline

13:30 Welcome Speech & the Role of the IEA PVPS Program
13:35 Session 1 – Current Trends in innovative PV Policies for Self-Consumption

Self-consumption policies have evolved rapidly and encompass now the ability to develop PV for self-consumption in multi-stories buildings, as well as virtual compensation between different sites. The following subjects will be discussed.

- Summary of PV self-consumption policies and innovations
- PVP4GRID project summary: collective self-consumption results
- Self-Consumption Initiative: Use cases
- Policy innovation for self-consumption policies: Country cases

15:00 Coffee Break

15:30 Session 2 – Innovative Distributed Applications for PV, Smart Buildings and Electric Mobility

What could drive PV development in the coming years? From innovative applications in buildings to the integration in the transport sector, this session will explore innovation and forward-looking ideas, including innovative business models for self-consumption.

- Electricity markets and RES profitability
- Hydrogen as a vector to support PV development
- A new dawn for Solar Heating and Cooling using PV electricity
- Innovative cross-cutting applications for electric mobility and PV

17:30 Closing Speech
Stefan Nowak, IEA-PVPS Chairman, Net Energy

Contact for further information: Gaëtan Masson, Task 1 Operating Agent g.masson@iea-pvps.org
Eco-Design, Eco Labeling, Green Public Procurement – Sustainability Leadership for the Terawatt Age

jointly with the International Energy Agency Photovoltaic Power Systems Programme (IEA PVPS) – IEA PVPS Task 12

Day: Tuesday, 10 September 2019
Time: 08:30 - 12:30
Site: EU PVSEC at Marseille Chanot Convention and Exhibition Centre, Marseille, France
Room: Auditorium 5 Morgiou, first floor
Access: Open to all Conference participants (on days registered)

The preparatory study of the European Commission on Eco-Design, Eco-Labeling, Green Public Procurement and Energy Labeling for PV modules, inverters and PV systems will be concluded in June/July 2019 with policy recommendations for sustainable product policies for these components.

At the same time, the International Sustainability Leadership Standard for PV Modules and Inverters (NSF 457) will be finalized and form the basis for an EPEAT listing of these components and an international eco-label as well as Green Public Procurement rules for PV modules and inverters, potentially applicable in 33+ countries globally.

The parallel event should provide an overview on these policy developments and give perspectives from the industry, procurement and customer side on proposed policy measures as well as lining out the potential effects these would have on product developments and industrial policy in the European Union.

What will be the effect of potential policy measures in the EU and how can those be streamlined with the international sustainability leadership standard and discussions around the taxonomy for sustainable finance?
Research meets Business – Solar Industry Forum

jointly with ETIP-PV, Becquerel Institute along with the support of SOLARUNITED

Day: Tuesday, 10 September 2019
Time: 08:30 - 12:30
Site: EU PVSEC at Marseille Chanot Convention and Exhibition Centre, Marseille, France
Room: Auditorium 6 Sormiou, first floor
Access: Open to all Conference participants (on days registered)

• Dedicated to Global Manufacturing Challenges

Programme Outline

08:30 - 10:00
SESSION 1 – GLOBAL MANUFACTURING CHALLENGES: The state of the PV industry – an ongoing challenged Industry
This session presents the latest developments and challenges of the PV industry in Europe and on the international stage focusing on the declining market prices and the pertinence of the learning curve.

10:00 - 10:20 Coffee Break

10:20 - 11:20
SESSION 2 – GLOBAL MANUFACTURING CHALLENGES: Industry 4.0 concepts – how to improve manufacturing? The role of equipment manufacturers in the entire manufacturing value chain.
This session discusses options for improving manufacturing through automatisation and digitalisation of processes: the role of equipment manufacturers and innovations to lower production costs in the coming years.

11:20 - 12:15
SESSION 3 – GLOBAL MANUFACTURING CHALLENGES: Bringing back the industry – the policy debate. From ecodesign to technology tenders, a few paths for PV industry development.
PHOTOVOLTAICS | FORMS | LANDSCAPES
Energy as a Landscape Infrastructure
jointly with ENEA, Becquerel Institute, ETA-Florence and WIP Renewable Energies

Day: Tuesday, 10 September 2019
Time: 13:30 – 17:00
Site: EU PVSEC at Marseille Chanot Convention and Exhibition Centre, Marseille, France
Room: Auditorium 5 Morgiou, first floor
Access: Open to all Conference participants (on days registered)

This is a special event, at its 8th edition, in conjunction with the 36th EU PVSEC, organised by ENEA, Becquerel Institute, ETA-Florence and WIP Renewable Energies. The event highlights how architects, designers, developers, and researchers take up the challenge of letting photovoltaic systems interact with landscapes and buildings. “Energy as a landscape infrastructure” is the challenge for this year’s edition, in Marseille. Architects, developers and researchers wishing to present already completed or ongoing projects, as well as innovative research results and ideas should apply by filling the submission form. A committee of distinguished experts will select the works to be delivered as oral/visual presentations.

Please, do not hesitate to contact us at info@pv-landscapes.com should you have any queries.

With kind regards and looking forward to an exciting event.
Research meets Business – Solar Industry Forum
jointly with ETIP-PV, Becquerel Institute along with the support of SOLARUNITED

Day: Tuesday, 10 September 2019
Time: 13:30 - 18:30
Site: EU PVSEC at Marseille Chanot Convention and Exhibition Centre, Marseille, France
Room: Auditorium 6 Sormiou, first floor
Access: Open to all Conference participants (on days registered)

• Dedicated to Increasing the Competitiveness

Programme Outline

13:30 - 15:00
SESSION 4 – INCREASING COMPETITIVENESS: innovation and future of cells & modules
Will n-type finally find its way to mass manufacturing, can we expect HJT to surpass n-PERT? What’s next for IBC innovations? With p-type PERC dominating the market? How innovations can increase efficiency and lower the costs? Will tandem cells finally meet expectations?

15:15 - 16:00
SESSION 5 – INCREASING COMPETITIVENESS: Quality and efficiency in manufacturing 4.0

16:00 - 16:45
SESSION 6 — CIRCULAR ECONOMY AND SMART ENGINEERING: pushing the industry forward

17:00 - 18:15
SESSION 7 INCREASING COMPETITIVENESS: thin films
Thin films are not dead and production capacities are increasing, allowing some technologies to thrive thanks to low production costs. What about perovskites in manufacturing and OPV?
New Solutions of Energy
CEA-Liten

Day: Tuesday, 10 September 2019
Time: 17:45 – 20:30
Site: EU PVSEC at Marseille Chanot Convention and Exhibition Centre, Marseille, France
Room: Auditorium 5 Morgiou, first floor
Access: Registration free of charge but mandatory via https://ypl.me/bYt

This event will be an opportunity to unveil the Liten’s strategy, its latest research, and to celebrate the Institute’s 15th anniversary. Presentations will be followed by a networking cocktail reception.

Programme Outline

17:45 - 18:00
Welcome

18:00 - 18:15
Liten, Innovation for Energy Transition
Florence LAMBERT, CEO CEA Liten

18:15 - 18:30
Keynote ext
TBD

18:30 - 18:40
PV In Europe - The New Era with SHJ Technology
Anis JOUNI, Head of Solar Technology division at CEA Liten

18:40 - 18:50
Smart Grid for the Integration of Renewable Generation
Franck BOURRY, Head of Intelligent Electrical System Laboratory, Solar Technology division at CEA Liten

18:50 - 19:00
Energy Storage & Sector Coupling
Simon PERRAUD, Deputy Director, Research Funding Programs at CEA Liten

19:00 - 19:10
Circular Economy for Energy Transition
Chrystel DEGUET, Head of New Materials division at CEA Liten

19:10 -19:15
Closing

19:15 - 20:30
Cocktail & Networking
Innovations in Photovoltaic Materials

jointly with the International Energy Agency Photovoltaic Power Systems Programme (IEA PVPS) – IEA PVPS Task 13

Day: Wednesday, 11 September 2019
Time: 08:30 - 12:30
Site: EU PVSEC at Marseille Chanot Convention and Exhibition Centre, Marseille, France
Room: Auditorium 5 Morgiou, first floor
Access: Open to all Conference participants (on days registered)

As a parallel event of the EU PVSEC 2019, the Workshop “Innovations in Photovoltaic Materials” organized by the International Energy Agency (IEA) Photovoltaic Power Systems Programme (PVPS) Task 13, will present ideas, concepts, and results from a global set of researchers aiming to both reduce cost and improve the performance and reliability of PV modules and systems by using new materials.

Programme Outline
Moderation: Ulrike Jahn, TÜV Rheinland, Germany

08:30 - 08:40
Short Introduction of IEA PVPS of Task 13
Ulrike Jahn, Task 13 Operating Agent

08:40 - 09:00
Functional Requirements of PV Materials
Joshua S. Stein, Sandia National Laboratories, NM, USA

09:00 - 09:20
Light-Weight PV Modules – Approaches and Reliability Aspects
Hartmut Nussbaumer, ZHAW, CHE

09:20 - 09:40
Encapsulant Innovations for Replacement of EVA
Gernot Oreski, Polymer Competence Center Leoben, AUT

09:40 - 10:00
Feedbacks and Discussion

10:00 - 10:30
Coffee and Networking Break

Moderation: Joshua S. Stein, Sandia National Laboratories, NM, USA

10:30 - 10:50
How to Extend PV Modules Service Life beyond 25 Years using Adapted Coextruded PP Backsheets and Encapsulants
Francois Rummens, Renolit, Belgium

10:50 - 11:10
Low-Cost Advanced Metallization to Reduce Cell-Crack-Induced Degradation for Increased Module Reliability
Sang Han, Osazda Energy, Albuquerque, NM USA

11:10 - 11:30
Reliability Aspects of New Cell Interconnection Technologies
Andreas Halm, ISC Konstanz, DEU

11:30 - 12:15
Panel discussion
Task 13 speakers and invited experts (tbc):
Michael Woodhouse, NREL, USA

12:15 - 12:30
Wrap-up & Closing session
Gernot Oreski, Polymer Competence Center Leoben, AUT

12:30
End of Workshop
Research meets Business – Solar Mobility Forum
jointly with ETIP-PV, Becquerel Institute along with the support of SOLARUNITED

Day: Wednesday, 11 September 2019
Time: 08:30 - 12:30
Site: EU PVSEC at Marseille Chanot Convention and Exhibition Centre, Marseille, France
Room: Auditorium 6 Sormiou, first floor
Access: Open to all Conference participants (on days registered)

Dedicated to
• E-Mobility through Solar Energy
• PV for transports
• Solar fuels for transports

Programme Outline

08:30 - 10:00
SESSION 1 – E-mobility through solar energy: a step towards the energy revolution
The energy revolution cannot exist without solar and electric mobility. How do they complement each other, what could be the connection between two sectors so different? From integrated actors acting in both fields to newcomers, the debate is open whether PV will drive the EV development or the other way around. Time for vehicles-to-grid!

10:00 - 10:20 Coffee Break

10:20 - 11:20
SESSION 2 – PV for transports
Using PV in transport vehicles implies new constraints and new opportunities. How can we integrate PV and how far PV-driven cars could go? Are we ready for PV-powered vehicles? Is this the beginning of a new era for PV and EV development?

11:20 - 12:15
SESSION 3 – Solar fuels for transports
With PV electricity costs reaching record-low levels in several places in the world, the production of solar fuels from PV - hydrogen, renewable gas and ammonia - becomes a tangible reality which could change the face of the energy world. With hydrogen as an alternative to battery EVs, the road may be bright for solar powering the future of transports.
Probabilistic PV Production Forecasts: Technics and Use-Cases

jointly with the International Energy Agency Photovoltaic Power Systems Programme (IEA PVPS) – IEA PVPS Task 16

Day: Wednesday, 11 September 2019
Time: 13:30 - 15:00
Site: EU PVSEC at Marseille Chanot Convention and Exhibition Centre, Marseille, France
Room: Auditorium 5 Morgiou, first floor
Access: Open to all registered participants of the EU PVSEC 2019

The workshop will give an introduction into probabilistic forecasts for solar energy, shows some examples of existing forecasts and how to implement them.
The EU Support Instruments – Unlocking Developing Markets
jointly with SolarPower Europe and GET.invest

Day: Wednesday, 11 September 2019
Time: 16:00 - 18:30
Site: EU PVSEC at Marseille Chanot Convention and Exhibition Centre, Marseille, France
Room: Auditorium 5, Morgiou, first floor
Access: Open to all registered participants of the EU PVSEC 2019

GET.invest, in partnership with SolarPower Europe, is organising a workshop at the EU PVSEC 2019 conference in Marseille. The event will inform participants about the financing and technical assistance instruments available through the EU External Investment Plan (EIP) to investors and entrepreneurs active in the clean energy markets of Africa and the EU Neighbourhood region. It will feature presentations, panel discussions and a Q&A session about the various pillars of the EIP, including the European Fund for Sustainable Development, various existing investment facilities and guarantee schemes, such as ElectriFI and Africa GreenCo, as well as technical assistance instruments such as GET.invest.

The EU’s ambitious EIP encourages investment in partner countries in Africa and the EU Neighbourhood region. Its objective is to leverage €44 billion worth of investments with an input of €4.5 billion in the form of grants and guarantees.

After the event, the speakers and participants are invited to get to know each other at a networking reception.

Programme Outline

16:00 - 16:15
Welcome
DG DEVCO, European Commission
SolarPower Europe

16:15 - 16:30
Overview of the EU External Investment Plan’s guarantees for sustainable energy investments
Representative of DG DEVCO, European Commission

16:30 - 16:45
Presentation of GET.invest
Representative of GET.invest

16:45 - 17:00
Presentation of ElectriFI
Representative of ElectriFI

17:00 - 17:15
Presentation of the European Guarantee for Renewable Energy (EGRE)
Representative of DG DEVCO, European Commission

17:15 - 17:30
Presentation of the solar industry on industry initiatives and the needs of the industry
Representative of SolarPower Europe

17:30 - 18:15
Moderated panel discussion with various stakeholders
- DG DEVCO, European Commission
- GET.invest
- SolarPower Europe
- Representatives from partner countries in the African, Caribbean, Pacific region
- Moderator (SolarPower Europe Secretariat)

18:15 - 18:25
Q&A with the audience

18:25 - 18:30
Conclusions
Moderator

18:30 - 19:15
Networking reception
In 2015, the IEA PVPS Task 15 collaboration started, focusing on the creation of an enabling framework for the acceleration of BIPV. Together with a number of other international research activities this has contributed to the international uptake of BIPV. In 2019, the first phase of IEA PVPS Task 15 will come to an end and a second phase is in development.

In 2014, ETIP PV started with a working group on BIPV, which was extended in 2018 to include all forms of integrated PV. With its activities, the Working Group IPV pushes the agreed target of the EU’s SET-Plan - Declaration on Strategic Targets in the context of an Initiative for Global Leadership in Photovoltaics (PV). This includes enabling mass realisation of “(near) Zero Energy Buildings” by Building-Integrated PV (BIPV) through the establishment of structural collaborative innovation efforts between the PV sector and key sectors from the building industry.

This session showcases some results of the international collaboration in the field of BIPV that was initiated by ETIP PV and IEA PVPS Task15. It will also discuss how national and international collaborations can help BIPV to move into its next phase of development.

Programme Outline

SESSION I: Results of five years of international collaboration
Chair: Zeger Vroon, Zuyd UAS, IEA PVPS Task 15
8:30 Opening Session I
Zeger Vroon, Zuyd UAS
8:40 BIPV case studies from an architectural perspective
Tjerk Reijenga, BEAR
9:00 Research and Development of BIPV in an international context
Simon Boddaert, CSTB, France
9:20 Regulatory aspects of BIPV
Francesco Frontini SUPSi/ Nuria Martin Ciemat
9:40 Solar Skins, an opportunity for greener cities (joint study by ETIP PV/SolarPower Europe)
Aurelie Beauvais, SolarPower Europe

SESSION II: Entering the next phase of BIPV
Chair: Rutger Schlatmann, PVcomB, Helmholtz Zentrum Berlin, WG Leader of Integrated PV of ETIP PV
10:15 Opening Session II
Rutger Schlatmann, PVcomB, WG Leader of Integrated PV of ETIP PV
10:25 Using the potential of Photovoltaics in Cities
Francisco Goncalves, energycities (tbc)
10:45 The BIPV business model canvas
Jessica Benson, RISE, Sweden
11:05 National consultancy office for Building Integrated Photovoltaics - independent advice on a local level
Björn Rau, Helmholtz Zentrum Berlin (tbc)
11:25 BIPV success stories! – Results of R&D collaboration on European level
Eduardo Roman, Tecnalia
11:45 IEA PVPS Task 15 phase 2 – the next step in international collaboration
Johannes Eisenlohr, Fraunhofer ISE, Germany
12:05 Moderated Discussion
by Rutger Schlatmann
Standardization of the Protocols for Emerging PV Technologies

Worldwide actions from material research community, companies and reference testing labs to the new measurement guidelines deployment jointly with the EC Joint Research Centre

Day: Thursday, 12 September 2019
Time: 10:10 - 12:10
Site: EU PVSEC at Marseille Chanot Convention and Exhibition Centre, Marseille, France
Room: Auditorium 5 Morgiou, first floor
Access: Open to all Conference participants (on days registered)

Parallel event during the 36th EU PVSEC possibly on Thursday 12th initiated by EC Joint Research Centre. The purpose of this event will be to introduce the most relevant works done in the development of measurement guidelines for a reliable characterization of emerging PV technologies, with a strong focus on how material research labs, testing labs and industrial project partners can benefit from a common approach. The workshop will highlight how existing IEC standards can be applied to innovative PV devices and what are the most critical issues not covered by the current version.

Programme Outline

10:10
Chair welcome
Speaker: TBD

10:15
New IEC TR 63228: Measurement protocols for photovoltaic devices based on organic, dye-sensitized or perovskite materials
Speaker: Giorgio Bardizza (EC - JRC), Chris Fell (CSIRO), Toshiro Matsuyama

10:30
Materials research lab perspective: methods used in materials research labs
Speaker: Antonio Abate (Helmholtz-Zentrum Berlin)

10:45
Industrial perspective 1: protocols used in companies, critical issues observed and proposed solutions
Speaker: David Bushnell (OxfordPV)

11:00
Industrial perspective 2: protocols used in companies, critical issues observed and proposed solutions
Speaker: TBD

11:15
Reference testing lab perspective: protocols used in reference testing labs
Speakers: Yoshihiro Hishikawa and Masahiro Yoshita (AIST)

11:30
Panel discussion
Moderator: TBD

12:05
Concluding remarks
Speaker: TBD

12:10
End of event
Advanced PV Energy Rating for Emerging Technologies

jointly with LNE in the framework of the PV-ENERATE project supported by the EURAMET EMPIR program

Day: Thursday, 12 September 2019
Time: 15:15 - 18:30
Site: EU PVSEC at Marseille Chanot Convention and Exhibition Centre, Marseille, France
Room: Auditorium 5 Morgiou, first floor
Access: Open to all Conference participants (on days registered)

The IEC 61853 standard series provides a framework for the energy rating of traditionally mounted classical PV modules. Today stakeholders have identified a need to extend the energy rating to emerging technologies (bifacial) or applications (BIPV). This implies the implementation of the metrological infrastructure and techniques to improve the measurement equipment and methodologies, to enable precise measurements of the parameters required.

This workshop is a parallel event of the EU PVSEC conference and is organized in the framework of the PV-ENERATE project supported by the EURAMET EMPIR program.

Participants to the event are invited to present their work on the following subjects (this list is not exhaustive):

• Improvement in the energy rating evaluation
• Development of traceable measurement methods
• Definition of testing conditions for the measurement of power and short-circuit current
• Evaluation of the measurement uncertainty including the spectral mismatch correction taking into account the correlation of the spectral data
Quality & Efficiency—our Business, your Success

Highest precision in IV characterization

www.halm.de
EXHIBITION

For more information please visit
www.photovoltaic-conference.com/programme/exhibition
List of Exhibitors · alphabetical
Abet Technologies, Inc.

168 Old Gate Lane
Milford, CT 06460
USA

phone: +1-203 540 9990
e-mail: sales@abet-technologies.com
web: www.abet-technologies.com

Abet Technologies manufactures a broad range of standard and custom PV-IV and IPCE and IQE measurement systems for solar cells up 300 x 300 mm, ASTM and IEC compliant steady state solar simulators, test stations from simple manual load to temperature stabilized vacuum chuck models, standards compliant software, calibrated reference cells, and a range of electronic loads for low and high current cells.

Bentham Instruments Ltd.

2 Boulton Road
Berkshire RG2 0NH
United Kingdom

phone: +44-118 975 13 55
e-mail: sales@bentham.co.uk
web: www.bentham.co.uk

Bentham are UK-based, market leaders in the design and manufacture of high-performance monochromator-based light measurement solutions, spanning applications in the optical characterisation of sources, detectors, materials and in-vivo diagnostics.

We will showcase our PVE300 EQE tool, utilised by research and industry worldwide in the measurement of spectral response, reflectance and transmission of all types of PV devices and architectures.

Atotech Deutschland GmbH

Erasmusstr. 20
10553 Berlin
Germany

phone: +49-30 349 850
e-mail: info@atotech.com
web: www.atotech.com

Atotech is a global leader in surface-finishing solutions. Through our comprehensive systems-and-solutions approach, we deliver chemistry, equipment and service to support diverse markets such as consumer electronics, global automotive industries, photovoltaic and many other end-markets. Atotech is a team of 3,800 experts in over 40 countries generating annual revenue of $1.2 billion. We are headquartered in Berlin, Germany, and have manufacturing operations across Europe, the Americas and Asia.

CNRS - Centre National de la Recherche Scientifique

3, Rue Michel-Ange
75794 Paris cedex 16
France

phone: +33-1 44 96 46 72
e-mail: abdelilah.slaoui@cnrs-dir.fr
web: www.celluleenergie.cnrs.fr

The French National Centre for Scientific Research (CNRS) is among the world’s leading research institutions. More than 30000 researchers and engineers are generating new knowledges and technologies in all disciplines of science, ranging from mathematics to engineering. CNRS is strongly involved in the field of Energy, with an emphasis on Renewable energies. About 700 researchers are dealing daily with solar energy. Several of the research activities are conducted in collaboration with industry.
CSEM SA

Jaquet Droz 1
2002 Neuchâtel
Switzerland

phone: +41-32 720 5411
e-mail: info@csem.ch
web: www.csem.ch

CSEM is a private, non-profit Swiss research and technology organization focused on generating value for a sustainable world. It is host of the Swiss CSEM PV-center.

The PV-center is an industry driven, application-oriented program created to foster innovation and accelerate the pace of technology transfer in the field of pv. Our mission is to bring new high-tech solutions for solar components and systems to technological maturity, and to serve the Swiss and global renewable energy industry.

ECM Greentech

46 Rue Jean Vaujany
38100 Grenoble
France

phone: +33-476 496 560
e-mail: info-pv@ecmtech.fr
web: www.ecm-greentech.fr

ECM Greentech proposes innovative technologies and turnkey solutions for the PV industry. ECM Greentech is specialized in the design, manufacturing and commercialization of industrial furnaces for crystal growth, solar cells manufacturing and the engineering of factories producing solar and energy storage systems.

Engineered Materials Systems, Inc.

100 Innovation Court
Delaware, OH 43015
USA

phone: +1-925 337 9061
e-mail: mfrancis@emsadhesives.com
web: www.emsadhesives.com

Engineered Materials Systems, Inc., a subsidiary of Nagase Co., Ltd. is a technology focused company specializing in manufacturing electronic materials for the Photovoltaic, Semiconductor, and Microelectronic Assembly markets. The EMS photovoltaics business is focused on formulating Electrically Conductive Adhesives for the interconnection of solar modules.
EXHIBITION

ETA - Florence Renewable Energies  G3

Via Giacomini 28
50132 Florence (FI)
Italy
phone: +39 055 500 21 74
e-mail: sara.momi@etaflorence.it
web: www.etaflorence.it

With 25 years of experience, ETA Florence is also European leader in knowledge management and established an interdisciplinary international team with diverse professional backgrounds from scientific research, strategic consultancy, communications, graphics, event organisation. These specialists ensure that the knowledge resulting is used effectively for the innovation cycle. ETA Florence collaborates with more than hundred institutions in over 30 countries to design projects with beneficial effects, using the team's collective expertise, to facilitate knowledge transfer and provide dissemination plans that are specifically tailored to European Commission co-funded projects. We have been partner in more than 300 EC-funded projects.


EUREC  D3

Place du Champ de Mars 2
1050 Brussels
Belgium

phone: +32-2 318 40 50
e-mail: info@eurec.be
web: www.eurec.be

EUREC is the voice of renewable energy research in Europe, representing European Research Centres active in renewable energy. Our members are prominent research and development (R&D) groups spread across Europe, operating in all renewable energy technologies. Our members also conduct research into supporting technologies such as energy efficiency, storage, distribution and integration, and undertake studies to evaluate the social and economic aspects surrounding renewable energy.
The Joint Research Centre (JRC) is the European Commission’s science and knowledge service which employs scientists to carry out research in order to provide independent scientific advice and support to EU policy. As part of its activities the JRC operates the European Solar Test Installation (ESTI) for assessing PV device performance at its site in Ispra, Italy. Its online tool PV-GIS provides free data on solar energy resource and potential PV electricity output for Europe and beyond.

exateq GmbH

Alois-Senefelder-Str. 6
92318 Neumarkt
Germany

phone: +49-9181 4636 422
e-mail: info@exateq.de
web: www.exateq.de

More than 20 years in designing and manufacturing of batch wet processing equipment relaunched 2015 as exateq GmbH. 4 platforms of batch wet benches developed since then, manual for labs, fully automatic pilot/lab systems, mass production of 12,000 w/h, proven in the field for several years. Equipment competency up to IBC cells. Production equipment operating in various Asia. History in carriers and automation. Genuine German engineering trained by Asian market requirements.

Now 600 MW HJT field experience!

GW production or R&D

0.5 GW or striving for > 26% efficiency

12,000 wafers/hour by one system or just 25 wafers/batch

The widest range of throughput platforms in the market

For technologies from PERC to IBC

References of top technology cell manufacturers

An engineering team with 20 years of experience in PV

VIP on-site support

If you want any or all of this – is your choice

Gerry Knoch, gerry.knoch@exateq.de

www.exateq.de
CLEANTECH HOLLAND
www.fme.nl

Cleantech Holland wishes to make a valuable contribution towards the achievement of the national, European and international climate objectives. It will do so by promoting the products and services of Dutch clean technology companies on the international markets. Cleantech Holland is an export organization and platform for Dutch clean tech businesses, universities, governments, and nonprofit organizations.

Our aim is to promote the use of Dutch products, services, systems and innovations in the following fields: 1. Renewable Energy, 2. Energy Infrastructure, 3. Energy Efficiency, 4. Energy Storage

The world is our market and we actively promote our solutions worldwide. We are committed to advancing sustainable solutions for benefit of the economy and the environment.

Fraunhofer Institute for Solar Energy Systems ISE

Heidenhofstr. 2
79110 Freiburg
Germany

phone: +49-761 4588 0
e-mail: info@ise.fraunhofer.de
web: www.ise.fraunhofer.de

With a staff of 1200 the Fraunhofer Institute for Solar Energy Systems ISE in Freiburg, Germany, is the largest solar energy research institute in Europe. Fraunhofer ISE is committed to promoting sustainable, economic, safe and socially just energy supply systems based on renewable energies. Its research provides the technological foundations for supplying energy efficiently and on an environmentally sound basis in industrialized, threshold and developing countries throughout the world.
G2V Optics Inc.

6801 104 St NW
Edmonton, AB T6H 2L5
Canada

phone: +1-877 428 0428
e-mail: info@g2voptics.com
web: www.g2voptics.com

G2V Optics was founded to apply innovative technology and data-driven, collaborative design toward solutions for this generation’s global issues. Starting with the highest precision spectral replication ever produced, G2V now provides a suite of advanced lighting. Our continuous, software-controlled, adjustable-spectra LED solar simulators enable researchers to unlock the potential of tomorrow’s solar-powered devices. When spectral precision matters for your research, let G2V Engineer the Sun™.

GenSun

1025, rue Henri Bequerel -
No. 11 Parc Club du Millénaire
34000 Montpellier
France

phone: +33-4 67 58 76 01
e-mail: info@gensun.fr
web: www.gensun.fr

GenSun is a French EPC created in 2007 which helps Independent Power Producer in the design, construction, operation and maintenance of medium and large-scale solar power plants (free fields, rooftops and carports) in France and abroad.
EXHIBITION

**GIORDANO Industries**

529, avenue de la Fleuride, Z.I. des Paluds
13685 Aubagne
France

phone: +33-442 845 800
e-mail: jean-francois.petit@giordano.fr
web: www.giordano.fr

French manufacturer since 1971 of renewable energy systems including SOLAR PUMP: brine to water heat pumps using unglazed solar thermal collector as energy source for hot sanitary water, space heating & cooling, swimming pool heating for domestic and collective new or existing projects.

It covers 100 % of needs (+ distribution losses) without back up. Divides energy bill by 3 or +, 0 db on roof, 0 CO2, 0 over heating risks. Standards PV panels can be added to hybrid collectors: COP +28%!

---

**GGEIC - Global Green Energy Industry Council**

Rond Point Schuman 6 c/o EUBIA, 1040 Brussels
Belgium

e-mail: sinuo.sun@etaflorence.it

Global Green Energy Industry Council (GGEIC) is a global platform launched at COP24, aiming to serve as an information sharing and networking hub of green energy, with a mission to promote and advance the role of green energy industries in the world. GGEIC is initiated and co-founded by Asian Photovoltaic Industry Association (APVIA), European Biomass Industry Association (EUBIA) and New Energy Industry Association Asia Pacific (NEIAAP) and supported by other international associations.

---

**The EU PVSEC Proceedings**

constitute a comprehensive source of state-of-the-art information and vital point of reference for researchers, technologists, decision-makers, entrepreneurs and all involved in the global PV sector.

Visit www.eupvsec-proceedings.com to browse through the Conference Proceedings and for instant download of papers.

Your personal log-in details for the User Area on the EU PVSEC website are also valid to access the EU PVSEC Proceedings website.
h.a.l.m. elektronik

Friesstr. 20
60338 Frankfurt am Main
Germany

phone: +49-69 94 33 53-0
e-mail: info@halm.de
web: www.halm.de

h.a.l.m. elektronik GmbH develops and delivers high-end measuring systems for photovoltaic technologies world-wide. Founded in Germany in 1984, h.a.l.m. has focused its experience and passion for the last 14 years to the measurement of electrical characteristics of photovoltaic cells and modules by providing state-of-the-art equipment. h.a.l.m.’s position as market and technological leader shows its commitment to the Photovoltaic industry.

H2020 Projects for the Future of PV in EU

Wilhelm-Johnen-Str.
52146 Jülich
Germany

phone: +49 2461 61-1604
e-mail: k.ding@fz-juelich.de
web: http://nextbase-project.eu

NextBase - Next-generation interdigitated back-contacted silicon heterojunction solar cells and modules by design and process innovations

DISC - Double side contacted cells with innovative carrier-selective contacts

AMPERE - Automated photovoltaic cell and Module industrial Production to regain and secure European Renewable Energy Market
IEA PVPS (International Energy Agency Photovoltaic Power Systems Programme)  

IEA PVPS (International Energy Agency Photovoltaic Power Systems Programme)  

INTERNATIONAL ENERGY AGENCY PHOTOVOLTAIC POWER SYSTEMS PROGRAMME (IEA PVPS)  
- Global cooperation towards sustainable development.  
- 32 members: 27 countries, EC, SolarPower Europe, Copper Alliance, SEPA & SEIA.  
- Activities are carried out collaboratively on a country basis along a number of technical and non-technical subjects related to photovoltaics.  
- Currently, 8 projects (Tasks) are active.

INES-CEA Liten  

INES-CEA Liten  

CEA-Liten and its Department of Solar Energy INES represent a major European research institute and a driving force behind the development of the sustainable energy technologies of the future. The institute is spearheading the efforts of all those working in Europe to limit dependency on fossil fuels and reduce greenhouse gas emissions in key areas: solar energy, hydrogen, energy storage and energy efficiency for buildings, industry, energy networks and transport.

InnoLas Solutions GmbH  

InnoLas Solutions GmbH  

InnoLas Solutions is part of the photonic systems group and designs and produces highly reliable laser systems for micro material processing for the use in the photovoltaic, electronics, semiconductor and precision engineering industries.

Institut Photovoltaïque d’Ile de France  

Institut Photovoltaïque d’Ile de France  

The Institut Photovoltaïque d’Ile-de-France (IPVF) is a global collaborative research platform, specialized in solar PV technologies. IPVF brings together internationally recognized industrial leaders (EDF, Total, Air liquide), academic research teams (CNRS, Ecole polytechnique), equipment manufacturers (Horiba, Riber) and aims at becoming a world leading center for research, innovation & training in the solar PV arena.
Ion Beam Services
F4, G2

Z.L. Peynier-Rousset
Rue Gaston Imbert prolongée
13790 Peynier
France

phone: +33-4 425 389 53
e-mail: ibso@ion-beam-services.fr
web: www.ion-beam-services.com

For more than 30 years, IBS has assembled the expertise, tools and skills required to meet the diverse ion implantation needs of global clients.

IBS has developed a unique and powerful Plasma Immersion Ion Implanter (PIII), PULSION®. Used in INES, PULSION Solar is a low cost, high throughput tool for applications such as Phosphorus, Boron implant for P-type Al-BSF & PERC cells, N-PERT and Bifacial cells with a simplified process and implantation of the Poly-Si layer in TOPCON or IBPC structures.

Ivy Battery Tech Ltd
E10

Caicheng Industrial Park Xingye Bvld
Shangrao, Jiangxi
China

phone: +86-159 866 016 82
e-mail: millson@ivybattery.com
web: www.ivybattery.com

For more than 30 years, IBS has assembled the expertise, tools and skills required to meet the diverse ion implantation needs of global clients.

IvyBattery was funded by wealthy knowledge in battery, energy storage and smart control. We have developed a fully integrated energy storage solution for optimizing energy utilization and maximizing energy savings. Our solution range includes long duration batteries, efficiency hybrid systems and cloud data applications.

Jonas & Redmann Group GmbH
E1

Kaiserin-Augusta-Allee 113
10553 Berlin
Germany

phone: +49-30 23 08 66 0
e-mail: info@jonas-redmann.com
web: www.jonas-redmann.com

The basis for the profitable production of crystalline silicon solar technology is the stringent control of production costs while simultaneously achieving and maintaining a high level of efficiency. This is only feasible with innovative engineering. Since the year 2000, we have been accompanying our customers from the photovoltaic industry and providing them with highly innovative automation, metallization and laser process technology.

Newport Spectra-Physics
E7

Guerickeweg 7
64291 Darmstadt
Germany

phone: +49-6151 7080
e-mail: germany@newport.com
web: www.newport.com

MKS Instruments, Inc. is a global leader in vacuum and control solutions and a provider of technologies that enable advanced processes and improve productivity. With the acquisition of Newport Corporation, MKS added leading capabilities in sophisticated light and motion solutions for highly demanding applications to its portfolio. The Light & Motion Division of MKS features Newport, Spectra-Physics and Ophir – three of the most respected brands in the photonics industry.
As a historical pioneer of the photovoltaic industry in France, Photowatt® has been designing wafers, cells and modules for 40 years and is now one of the only manufacturers in Europe.

Today, Photowatt® is deploying its transformation project by increasing its industrial capacity to 400 MW on low-carbon production of ingots and high-quality silicon wafers.

The DERBI competitiveness cluster, dedicated to energy transition, carries out its activities in the southern French Occitanie / Pyrénées Méditerranée region. Its missions: > To develop innovation, research, training, the transfer of technologies, development, and the creation of businesses at regional, national, and international level. Today, the DERBI competitiveness cluster counts 170 members: companies, research centers, laboratories, universities, professional associations, ...

Stay up-to-date by following the EU PVSEC via...

...or join our subscribers list to get the latest news, updates and special offers delivered directly in your inbox.

#eupvsec
"THE WET PROCESSING COMPANY" RENA Technologies is one of the world's leading suppliers of production equipment for wet chemical surface treatment.

RENA equipment typically treats or modifies the surfaces of solar cells, semiconductor wafers, optical substrates, dental implants or other high-tech products using wet chemical processing. RENA offers approved, standardized machines as well as systems tailored to specific customer requirements, process support and chemical performance additives.

Semilab is leading supplier of metrology equipment for solar industry. We design, produce and sell metrology equipment for the characterization of semiconductor and photovoltaic materials, for monitoring the manufacturing process of semiconductor devices, flat panel displays and solar cells, and also for R&D purposes in these areas.
SINGULUS TECHNOLOGIES

Hanauer Landstr. 103
63796 Kahl am Main
Germany

phone: +49-6188 440 0
e-mail: bernhard.krause@singulus.de
web: www.singulus.de


SINGULUS TECHNOLOGIES builds machines for economical and resource-efficient production processes. The application areas include coating, surface processing, wet-chemical as well as the related chemical and physical processing steps.

We invite you to talk to our specialist during EU PVSEC 2019, booth D2.

Sinton Instruments

4720 Walnut Suite 102
Boulder, CO 80301
USA

phone: +1-303 945 2113
e-mail: quotes@sintoninstruments.com
web: www.sintoninstruments.com

Sinton Instruments provides state-of-the-art test and measurement instruments for use in Silicon PV manufacturing and R&D for each stage of the solar cell production process from bricks and ingots through module test. We have revolutionized industrial cell and module testing by incorporating patented methodology and analysis techniques to provide unprecedented accuracy and process-control information.

INNOVATIVE DEPOSITION EQUIPMENT – PVD & PECVD

... for new cell formats

We invite you to talk to our specialists during EU PVSEC 2019 at our booth about new cell formats and take a closer look at our production machines:

GENERIS PVD

→ Inline sputtering for ITO on heterojunction solar cells
→ Single sided deposition of doped a-Si layers for TOPCon and comparable cell structures

GENERIS PECVD

Inline plasma enhanced chemical vapor deposition
→ Dielectric layers for PERC
→ Doped polycrystalline layers for TOPCon and comparable cell structures
SOLARC Innovative Solarprodukte GmbH  E9

Glogauer Str. 21
10999 Berlin
Germany

phone: +49-30 319 85 54 00
e-mail: info@solarc.de
web: www.solarc.de

SOLARC is your industrial partner for the development and manufacturing of innovative solar power systems, customised solar modules, solar charge controllers, DC/DC converters, GPS Tracking systems as well as motor and lighting controls systems.

We are a reliable partner for the developing and manufacturing customised components for a solar power-supply for products or even a complete new solar-powered solution, right from the prototype to series run.

SolarSwissConnect  E6

c/o FSRM
Ruelle Du Peyrou 4
Case postale 2353
2001 Neuchatel
Switzerland

phone: +41-32 720 09 00
e-mail: info@solarswissconnect.ch
web: www.solarswissconnect.ch

SolarSwissConnect is the Switzerland association of equipment manufacturers, products manufacturers and scientific & testing institutes of photovoltaic field.

Solargis s.r.o.  C1

Mytna 48
81107 Bratislava
Slovakia

phone: +421-2 4319 1708
e-mail: contact@solargis.com
web: www.solargis.com

Our mission is to provide solar and weather information that help professionals anywhere in the world to build and operate successful solar projects. Our data, online apps and consultancy services are tailored to significantly reduce risk and enable companies to make world-class solar project decisions. With over 19 years of experience, Solargis has evolved to become a choice of the majority of solar market leaders in over 100 countries worldwide.

SOLARUNITED  E1

P.O. Box 1610
63406 Hanau
Germany

phone: +49-618 198 280 42
e-mail: ekus@ipvea.com
web: www.solar-united.org

SOLARUNITED - THE GLOBAL SOLAR BUSINESS & TECHNOLOGY ASSOCIATION

Focusing on Quality, Reliability, Innovation, and PV Technology.

Formally known as IPVEA - today, we are known as SOLARUNITED, and we serve the interests of PV equipment manufacturers, module producers, project developers, financiers, consultants, service providers - the complete value chain and more!

As an SOLARUNITED member, you enjoy the considerable benefits of access to key decision makers, exposure to timely and critical issues, and expert analysis to help your business or organization succeeds in the international solar industry.
Solean

17 Allée Lac d’Aiguebelette, BP 80314
73377 Le Bourget du Lac
France

phone: +33-951 434 957
e-mail: contact@solean.fr
web: www.solean.fr

Solean is a new & innovative equipment manufacturer providing disruptive „Lean solar solutions“.

We offer highly innovative, modular, 100% robotic assembly units for the manufacture of photovoltaic (pV) solar panels of all shapes and sizes.

Our assembly units have been engineered to the most extreme requirements. Solean delivers the ideal machine to facilitate and accelerate the production of photovoltaic solar panels globally.

Tempress Systems BV

Radeweg 31
8171 MD Vaassen
The Netherlands

phone: +31-578 699 200
e-mail: rdejong@tempress.nl
web: www.tempressl.nl

Tempress Systems innovating the future.

Supplier of diffusion and LP/PECVD furnace equipment as well as ALD processing equipment ranging from R&D tools up to MVM, fully automated furnace equipment.
EXHIBITION

Tenerrdis

19 Rue des Berges
38024 Grenoble
France
phone: +33-4 765 185 34
e-mail: contact@tenerrdis.fr
web: www.tenerrdis.fr

TENNERDIS: THE CLUSTER FOR THE ENERGY TRANSITION
Tenerrdis supports the emergence and growth of strategic solutions for the energy transition. We assist our 230 members; aiming developing their activities within the six sectors:
1. CARBON-FREE MOBILITY
2. ENERGY EFFICIENCY FOR BUILDINGS AND INDUSTRY
3. MULTI-ENERGY MICROGRIDS
4. EMBEDDED INTELLIGENCE AND CYBERSECURITY FOR ENERGY SYSTEMS
5. ENERGY CONVERSION AND STORAGE
6. RENEWABLE ENERGY PRODUCTION AND INTEGRATION INTO THE CARBON-FREE ENERGY MIX

Tenerrdis is based in Grenoble, in the Auvergne-Rhône-Alpes region. It has been awarded by a Gold Cluster Management Excellence certification.

University of Ljubljana, LPVO

Trzaska cesta 25
1000 Ljubljana
Slovenia
phone: +386 1 4768 470
e-mail: Marko.Topic@fe.uni-lj.si
web: http://slo-pv.fe.uni-lj.si/

The University of Ljubljana is the largest and the oldest in Slovenia. The Laboratory of Photovoltaics and Optoelectronics (LPVO) within its Faculty of Electrical Engineering is central R&D&I group for photovoltaics in Slovenia. In the fields of photovoltaics, optoelectronics and electronics we offer:
• Turnkey monitoring solutions for solar cells and PV modules
• Prototype development
• Characterisation
• Modelling and simulations
• PV system planning
• PV system components testing

INNOVATIVE WET PROCESSING EQUIPMENT – BATCH & INLINE
... for new cell formats

We invite you to talk to our specialists during EU PVSEC 2019 at our booth about new cell formats and take a closer look at our wet processing machines:

LINEX
Inline Wet Process Equipment for
→ cleaning, alkaline & acidic etching, single side treatment, polish etch & PSG removal & inline ozone applications

SILEX II
High throughput batch wet process equipment with
→ advanced cleaning and ozone applications for high-efficiency cell lines

Ask for Innovation. Call SINGULUS TECHNOLOGIES
mail: sales@singulus.de _ tel: +49-6188-4400 _ www.singulus.de
VON ARDENNE GmbH  
Am Hahnweg 8  
01328 Dresden  
Germany  

phone: +49-351 263 73 00  
e-mail: office@vonardenne.biz  
web: www.vonardenne.biz

VON ARDENNE develops and manufactures industrial equipment for vacuum coatings on materials such as glass, wafers, metal, and polymer films. Furthermore, we are the leading provider of coating systems for thin-film and crystalline photovoltaics.

If you are looking for coating equipment with a low cost of ownership for solar technologies such as HJT, PERC, perovskite or tandem cells, we can provide you with future-proof technology and equipment in all scales.

Wiley  
John Wiley & Sons, The Atrium,  
Southern Gate  
Chichester, West Sussex PO19 8SQ  
United Kingdom  

e-mail: customer@wiley.com  
web: www.wiley.com

Wiley empowers researchers, learners, universities, and corporations to achieve their goals in an ever-changing world. We are strengthening the research community by partnering with learned societies and supporting researchers to generate, communicate, and enable access to the scientific and scholarly insights that are helping to solve some of the world’s biggest challenges. Our online journals, books, and other digital content build on a 200-year heritage of quality publishing.

WCRE - World Council for Renewable Energy  
Belgium  
web: www.wcre.de

We thank our Sponsors
WIP Renewable Energies  
Sylvensteinstr. 2  
81369 Munich  
Germany  
phone: +49-89 720 12 735  
e-mail: wip@wip-munich.de  
web: www.wip-munich.de

WIP is a renewable energy consultancy with a long history of managing research and innovation projects and organizing leading conferences and events in the sector. The current energy infrastructure worldwide must be transformed with the objective to reduce fossil energy related conflicts, mitigate climate change, and avoid other negative impacts of nuclear and fossil energy systems. Our mission is to contribute to this goal by facilitating research, innovation and market integration of renewable energy systems through collaborative efforts across all sectors of society.

WIP Renewable Energies has over 37 years of experience in leading international collaborative projects aiming to bring innovative renewable energy technologies and services closer to the market.

WIP Renewable Energies has over 30 years of experience in event organization. This includes the conception, pre-financing, preparation, organisation and management of high level and large-scale international scientific conferences, workshops, seminars in the field of Renewable Energies.

Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW)  
Meitnerstr. 1  
70563 Stuttgart  
Germany  
phone: +49-711 78 700  
e-mail: info@zsw-bw.de  
web: www.zsw-bw.de

The ZSW is one of the leading institutes for applied research in the field of photovoltaics, renewable fuels, battery technology, fuel cells and energy systems analysis with 260 employees at its locations in Stuttgart and Ulm, a solar testing facility at Widderstall, Germany, and a wind power field test site in complex mountainous terrain near Geislingen/Steige.
Are you looking for coating equipment with a low cost of ownership for crystalline or thin-film photovoltaics and for technologies such as HJT, IBC, CIGS or passivated contacts? We can provide you with future-proof technology and system solutions in all scales.

Visit our booth at the EU PVSEC 2019 (booth E5) for more information. www.vonardenne.biz
Exhibition Layout with Exhibitors by stand number
List of Exhibitors, alphabetical

Abet Technologies, Inc. ....... F2
Atotech Deutschland GmbH ... E3
Bentham Instruments Ltd. .... B3
CNRS - Centre National de la Recherche Scientifique .... F6
CSEM SA ............... E6
ECM Greentech .......... F4, G2
Engineered Materials Systems, Inc. .......... A2
ETA - Florence Renewable Energies ......... G3
EUREC ................... D3
European Commission JRC .... B4
exateq GmbH ............ A5
FME (Dutch PV Sector) ....... F7
Fraunhofer Institute for Solar Energy Systems ISE .... F5
G2V Optics Inc. ............. E4
GenSun ..................... A6
GGEIC - Global Green Energy Industry Council .... G4
GIORDANO Industries ....... C4
h.a.l.m. elektronik........ B1
H2020 Projects (NextBase, DISC, AMPERE) .... F1
IEA PVPS International Energy Agency Photovoltaic Power Systems Programme .. D3
INES - CEA LITEN ......... F4, G2
InnoLas Solutions GmbH ....... E1
Institut Photovoltaik d'Ile de France .......... F4, G2
Ion Beam Services ......... F4, G2
Ivy Battery Tech Ltd ......... E10
Jonas & Redmann Group GmbH ............. E1
Newport Spectra-Physics .... E7
PHOTOWATT ............. F4, G2
Pôle de Compétitivité DERBI .......... F4, G2
pv magazine group GmbH & Co.KG ............ C2
RENA Technologies GmbH ... E2
Semilab Co. Ltd. ........... E11
SINGULUS TECHNOLOGIES . D2
Sinton Instruments .......... F3
SOLARC Innovative Solarprodukte GmbH .......... E9
Solargis s.r.o ................ C1
SolarSwissConnect ........ E6
SOLARUNITED .............. E1
SOLEAN ................. F4, G2
Tempress Systems BV ....... C3
Tennerrdis ............. F4, G2
University of Ljubljana, Faculty of Electrical Engineering ....... C5
VON ARDENNE GmbH ... E5
WCRE - World Council for Renewable Energy ........ G3
Wiley ....................... E8
WIP Renewable Energies .... D3
ZSW Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg .... A1
List of Exhibitors, alphabetical

A1 ZSW Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg
A2 Engineered Materials Systems, Inc.
A5 exateq GmbH
A6 GenSun
B1 h.a.l.m. elektronik
B3 Bentham Instruments Ltd.
B4 European Commission JRC
C1 Solargis s.r.o.
C2 pv magazine group GmbH & Co.KG
C3 Tempress Systems BV
C4 GIORDANO Industries
C5 University of Ljubljana, Faculty of Electrical Engineering
D2 SINGULUS TECHNOLOGIES
D3 EUREC
D3 IEA PVPS International Energy Agency Photovoltaic Power Systems Programme
D3 WIP Renewable Energies
E1 InnoLas Solutions GmbH
E1 Jonas & Redmann Group GmbH
E1 SOLARUNITED
E10 Ivy Battery Tech Ltd
E11 Semilab Co. Ltd.
E2 RENA Technologies GmbH
E3 Atotech Deutschland GmbH
E4 G2V Optics Inc.
E5 VON ARDENNE GmbH
E6 CSEM SA
E6 SolarSwissConnect
E7 Newport Spectra-Physics
E8 Wiley
E9 SOLARC Innovative Solarprodukte GmbH
F1 H2020 Projects (NextBase, DISC, AMPERE)
F2 Abet Technologies, Inc.
F3 Sinton Instruments
F4, G2 ECM Greentech
F4, G2 INES - CEA LITEN
F4, G2 Institut Photovoltaique d’Île de France
F4, G2 Ion Beam Services
F4, G2 PHOTOWATT
F4, G2 Pôle de Compétitivité DERBI
F4, G2 SOLEAN
F4, G2 Tenerdis
F5 Fraunhofer Institute for Solar Energy Systems ISE
F6 CNRS - Centre National de la Recherche Scientifique
F7 FME (Dutch PV Sector)
G3 ETA - Florence Renewable Energies
G3 WCRE - World Council for Renewable Energy
G4 GGEIC - Global Green Energy Industry Council
GENERAL INFORMATION

For more information please refer to www.photovoltaic-conference.com/participation
VENUE OF EU PVSEC 2019

Marseille Chanot Convention and Exhibition Centre
114 Rond-Point du Prado
13008 Marseille
France

www.marseille-chanot.com

For detailed Information please visit
www.photovoltaic-conference.com/participation
**EU PVSEC 2019 Registration Benefits**

<table>
<thead>
<tr>
<th>Registration Category</th>
<th>Full Conference Week</th>
<th>One Day/Admission</th>
<th>Two Days Admission</th>
<th>Week</th>
<th>Students</th>
<th>Networking Lunch (from Mon - Thu)</th>
<th>EU PVSEC Dinner (Wednesday)</th>
<th>Exhibition Visitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conference Badge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EU PVSEC Exhibition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EU PVSEC Parallel Events</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EU PVSEC Proceedings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information Material</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**ACCESS**

**EU PVSEC Conference**

Upon arrival at Marseille Chanot Convention and Exhibition Centre, Conference participants should proceed to the Conference Registration Desk at the Registration Area, 1st floor to check in and pick up their badge.

**Opening hours of the Conference Registration Desk:**

<table>
<thead>
<tr>
<th>Day</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>08 Sept 2019</td>
<td>16:00 - 18:00</td>
</tr>
<tr>
<td>Mon</td>
<td>09 Sept 2019</td>
<td>07:30 - 19:00</td>
</tr>
<tr>
<td>Tue – Thu</td>
<td>10 - 12 Sept 2019</td>
<td>08:00 - 19:00</td>
</tr>
<tr>
<td>Fri</td>
<td>13 Sept 2019</td>
<td>08:00 - 09:30</td>
</tr>
</tbody>
</table>

**Conference Badge**

Your personalised Conference badge authorises you to visit:

- all EU PVSEC 2019 Conference sessions on day/s registered
- all EU PVSEC 2019 Parallel Events on day/s registered
- the Exhibition (09 - 12 September 2019)

*Kindly note, that your badge is not transferable to another person. We ask for your understanding that your personalised admission might be controlled by our staff. In case of loss or find a badge, please inform our staff immediately. Kindly note that lost badges cannot be replaced.*

**EU PVSEC Exhibition**

The Exhibition is open to all Conference Delegates.

**Opening hours are from:**

<table>
<thead>
<tr>
<th>Day</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon</td>
<td>09 Sept 2019</td>
<td>13:00 - 20:00</td>
</tr>
<tr>
<td>Tue – Wed</td>
<td>10 - 11 Sept 2019</td>
<td>09:00 - 18:00</td>
</tr>
<tr>
<td>Thu</td>
<td>12 Sept 2019</td>
<td>09:00 - 16:00</td>
</tr>
</tbody>
</table>

**EU PVSEC Parallel Events**

All EU PVSEC 2019 Parallel Events are open to Conference Delegates on day/s registered.

For further information about the EU PVSEC Parallel Events see page 240.
CONFERENCE PROCEEDINGS

The EU PVSEC 2019 Proceedings contain all scientific papers presented at the EU PVSEC 2019 and submitted for publication.

They constitute a comprehensive source of state-of-the-art information and vital point of reference for researchers, technologists, decision-makers, entrepreneurs and all involved in the global PV sector.

The EU PVSEC 2019 Proceedings include full presented papers, slides presentations and poster presentations (if available).

A digital identifier (DOI code) has been assigned to each paper to ensure unequivocal and permanent identification and citation capability of the online publication. This identification system is administered by the German National Library of Science and Technology.

Conference participants will have immediate and free access to the EU PVSEC 2019 Proceedings right after publication. All EU PVSEC Proceedings are published under a full free access policy and are searchable online (and citable online). This underlines our commitment to prioritising quick and open access to high quality scientific results and allows the entire PV community to easily access this comprehensive database for PV research and technology, renowned for the high standard of its scientific contributions.

The EU PVSEC Proceedings are available on www.eupvsec-proceedings.com.

Authors are requested to submit their manuscript for publication in the Conference Proceedings (see page 334).

PRIZES & AWARDS

European Becquerel Prize for Outstanding Merits in Photovoltaics

The European Becquerel Prize for Outstanding Merits in Photovoltaics will be awarded during the Conference. This prize was established by the European Commission in 1989 to mark the 150th anniversary of Alexandre-Edmond Becquerel’s discovery of the photovoltaic effect in 1839, which laid the foundation of both, photovoltaics and photography. The Becquerel Prize will be awarded on Monday, 09 September 2019 during the Opening Ceremony in Auditorium 1.

The Becquerel Prize 2019 is awarded to

Dr. Pierre Verlinden

Consultant, Non-Executive Director to PV companies, Visiting Professor at Sun Yat-sen University (Guangzhou).

He receives the award in honour of his scientific and technological merits in the development of high-efficiency photovoltaics. The decision of the Becquerel Committee is based on the outstanding work of Dr. Verlinden on the design of high-efficiency solar cells, modules and systems including back contact and rear side passivated silicon solar cells.

Throughout his career, Dr. Verlinden has pioneered the development of advanced solar cell structures, not limiting his work to just scientific progress but focusing on feasible implementation for industrial mass production. This combination of deep scientific understanding and his contributions to the global PV industry makes his work unique for the progress of photovoltaics over the last 40 years. He has been very active in the global photovoltaic scientific community, serving on numerous scientific boards. Committed to education and teaching for decades, Dr. Verlinden has passed on his great passion and deep knowledge of photovoltaics to generations of young scientists as well as manufacturing engineers.

Award Ceremony

The prize will be awarded at the Opening of this years’ European Photovoltaic Solar Energy Conference and Exhibition, on Monday morning, 09 September 2019.
Awards for Outstanding Visual Presentations
This award is one of the highlights of the Closing Session: The most outstanding Visual Presentations of each session will be awarded.

A jury of experts judges the quality of the contents reported and the quality of the presentation.

New this year!: Aiming to increase the visibility of poster awards winners and as a recognition to the quality of their presentation, the winners will have the opportunity to perform a 5 minutes presentation to the poster area audience during the closing visual session on Thursday 12 September from 17:00 to 18:30. Winning posters will be moved to the “winners wall” in the poster area and it is there where the presentations will take place.

Same as in previous years, the awards will be delivered as part of the Conference Closing on Friday, 13 September 2019. The winners will be invited on stage and the winning posters will be projected in the Auditorium.

EU PVSEC 2019 Student Awards
Following the success of previous years, to encourage high-quality work among young researchers and to engage themselves in the scientific examination of the multifaceted issues and questions in the photovoltaic sector, the EU PVSEC Student Awards will be delivered in recognition of the most remarkable and outstanding research work in the field of PV on the occasion of the EU PVSEC 2019. The award is meant to honour students with extraordinary achievements in their scientific activities.

Among the applications received, the EU PVSEC Scientific Committee, made up of more than 230 leading research and industry experts, selected 14 international students who submitted abstracts to one of the seven topics of EU PVSEC’s conference programme. Finalists presentations will be evaluated by the Student Awards Committee during the week and the 6 EU PVSEC Student Award Winners will be presented during the Closing Session on Friday, 13 September 2019.

Take the chance to attend the presentation of their outstanding work in the following sessions:

Monday, 09 September 2019
Dennis Bredemeier
ISFH, Emmerthal, Germany
2AO.4.4 Impact of Silicon Nitride Film Properties on Hydrogen In-Diffusion into Crystalline Silicon

Andres Calcabrasini
Delft University of Technology, The Netherlands
1AO.2.1 The Ultimate Potential of Reconfigurable Modules for Increasing the Energy Yield of Partially Shaded Urban Photovoltaics Systems

Nasim Rezaei
Delft University of Technology, The Netherlands
3AO.8.2 Submicron CIGS Solar Cells: Feasibly towards the Absorption Limit

Tuesday, 10 September 2019
Achala Satharasinghe
Nottingham Trent University, United Kingdom
1BO.9.2 Wearable and Washable Photovoltaic Fabrics

Aline Kirsten Vidal de Oliveira
UFSC, Florianópolis, Brazil
5BO.6.4 Automatic Fault Detection of Photovoltaic Array by Convolutional Neural Networks during Aerial Infrared Thermography

Klemens Ilse
Fraunhofer CSP, Halle (Saale), Germany
4BO.11.5 Physics of Soiling and Dust Adhesion - Lessons Learnt from Laboratory Soiling Tests

Wednesday, 11 September 2019
Adrien Bercegol
IPVF, Palaiseau, France
3CO.5.2 Multidimensional Luminescence Imaging of Electron/Hole Transport in Triple Cation Perovskite

Elise Bruhat
CEA, Le Bourget du Lac, France
2CO.9.1 Fired Hydrogenated AZO Layers: A New Passivation Approach for High Temperature Passivated Contact Solar Cells

Laurie-Lou Senaud
CSEM, Neuchâtel, Switzerland
2CO.10.2 Bottom-Up vs Top-Down Approaches for Identifying and Mitigating the Transport Losses in High-Efficiency Silicon Heterojunction Solar Cells
**GENERAL INFORMATION**

Cyril Leon  
GeePs, Gif sur Yvette, France  
3CO.8.3  Capacitance-Voltage Characterization Technique Adapted to Tandem Solar Cell

Dominik Amstad  
University of Applied Sciences, Rapperswil, Switzerland  
5CV.4.6  Fault Inspection of CIGS PV Plant Using Aerial Infrared Thermography

**Thursday, 12 September 2019**

Kathleen Schneider  
UFSC, Florianópolis, Brazil  
7DO.7.1  Shared Solar Cooperatives in Brazil: Context, Overcoming Barriers and Lessons to Be Drawn from Previous European Countries Experiences

Sara Mirbagheri Golroodbari  
Utrecht University, The Netherlands  
5DO.6.3  Simulation of Performance Differences between Off-Shore and Land-Based Photovoltaic Systems

Moonyong Kim  
UNSW Australia, Sydney, Australia  
2DO.6.1  Generalised LeTID Modelling Using Temperature and Injection-Level Dependencies

Above programme may be subject to adaptation.

**NETWORKING**

**Coffee Breaks (for Conference Delegates)**  
Coffee Breaks are included in the Conference fee. They will be served during the Conference breaks in the Exhibition Area, 1st floor.

**Catering / Restaurants**  
A special dedicated Networking Lunch could be booked prior to the event. Tickets are not available on-site. The Networking Lunch will be served in a dedicated networking area in exclusive ambiance, directly in the Marseille Chanot Convention and Exhibition Centre. For those who did not include Networking Lunch tickets in their registration, there is a wide range of cafés and restaurants around Marseille Chanot Convention and Exhibition Centre.

**Welcome Reception**  
On Monday, 09 September, there will be a Welcome Reception for all Conference participants and Exhibitors, from 18:30 in the Exhibition Area, 1st floor. Come and meet your colleagues of the PV community and celebrate the EU PVSEC 2019 as a major networking platform for the global PV Solar sector.

**EU PVSEC Dinner**  
The EU PVSEC 2019 Conference Dinner takes place on Wednesday evening, 11 September 2019.  
The EU PVSEC Dinner will be a most captivating social event of the EU PVSEC week:
- Meet professionals from the PV world
- Enjoy excellent Cuisine
- Relax and network in pleasant ambiance
- Wednesday, 11 September 2019 from 19:30 – 23:00
- Free Bus Shuttle starting at 18:45 at the Marseille Chanot Convention and Exhibition Centre and going back at 22:00.

**Networking Lunch**  
A networking lunch will be available for interested delegates from Monday to Thursday, 09 - 12 September in a dedicated networking area in exclusive ambiance, directly in the Marseille Chanot Convention and Exhibition Centre, Room Endoume 3, 1st floor.

This avoids queueing up in lunch periods and provides a networking environment. The networking lunch will be served in buffet style, and is convenient for both meat lovers and vegetarians. Tickets can be bought online prior to the event, may become subject to availability and need to be paid in advance. Tickets will not be sold on-site. Access to the networking lunch will be granted upon presentation of a lunch voucher which you will receive at the registration desk on-site along with your registration documents. Lost tickets will not be replaced.
SERVICES

EU PVSEC Programme Online / App

We recommend using the EU PVSEC Programme Online Tool / App in order to most successfully schedule your EU PVSEC week.

The EU PVSEC Programme Online provides a quick and detailed general synopsis of all events, sessions and presentations, speaker’s CV and photos of the EU PVSEC 2019. It provides targeted search e.g. by speakers, organisations, topics, product categories, keywords, time and location.

Create your personal, clearly laid out agenda. See at a glance where and when your chosen presentations / sessions take place and get detailed information about the respective topics. You may save and modify your agenda at any time.

Please use the online version at www.eupvsec-planner.com, or the mobile version at mobile.eupvsec-planner.com.

The mobile version is web-based and can be used by all kinds of smartphones. All you need is your smartphone’s browser and internet connection.

More information about the EU PVSEC App can be found at www.photovoltaic-conference.com.

INSTRUCTIONS FOR AUTHORS AND PRESENTERS

Plenary / Oral Presentations

Speakers of Plenary and Oral presentations hand in their presentation/s at the Presenters’ Desk (Room Escalette, 1st floor) at least 2 hours prior to the start of their presentation. A technician will control the correct functionality and transfer the presentation to the respective auditorium. Further details regarding Plenary/Oral Presentations can be found in the Notes for Authors available on the EU PVSEC website.

Opening hours of Presenters’ Desk (Room Escalette, 1st floor):

<table>
<thead>
<tr>
<th>Day</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>08 Sept 2019</td>
<td>16:00 – 18:00</td>
</tr>
<tr>
<td>Mon</td>
<td>09 Sept 2019</td>
<td>07:30 – 19:00</td>
</tr>
<tr>
<td>Tue – Thu</td>
<td>10 – 12 Sept 2019</td>
<td>08:00 – 19:00</td>
</tr>
<tr>
<td>Fri</td>
<td>13 Sept 2019</td>
<td>08:00 – 12:00</td>
</tr>
</tbody>
</table>

Speakers and Chairpersons of Plenary and Oral sessions meet 15 minutes prior to the start of their session in the respective auditorium in order to be briefed and to become acquainted with audio-visual aids.

Visual Presentations

Authors of all Visual Presentations are requested to bring their posters with them and to set them up on the allotted boards during registration hours on Sunday (08 September), or the latest by Monday morning (09 September) and to take them down on Thursday (12 September) after the last Session at 18:30. All Visual presentations should be presented through the full 4 days from Monday to Thursday in the Poster Area. Authors of posters are requested to be in situ at their posters at the session time indicated in the Programme Brochure, in order to present their paper to the audience and to create a Q&A session. Please find all detailed guidelines in the Notes for Authors of Visual Presentations.

Submission of papers for publication in the EU PVSEC Conference Proceedings

In order to be published in the EU PVSEC 2019 Proceedings, corresponding authors of each presentation have to submit the original paper online between 02 - 12 September 2019 in his/her user area.

Only corresponding authors of each submission may upload final manuscripts. This means that the corresponding author is the only author from each paper that is able to complete the submission (as is the case for abstract submission). If the manuscript is not made available during this period, your paper cannot be published in the Conference Proceedings.

The document must be submitted in both Microsoft Word and Adobe Acrobat PDF formats.

To upload the paper, corresponding authors have just to follow the step-by-step procedures provided in the user area and complete the mandatory electronic Copyright Transfer Agreement as one of the steps of the online submission. The Copyright Transfer Agreement is compulsory and can only be carried out electronically. During the submission of your paper, you will be taken automatically to the EU PVSEC electronic copyright form. Your paper submission will not be complete and therefore cannot be published without the electronic copyright submission.

The Instructions for Preparation of Papers are available for download on the EU PVSEC website.

You can find computers and technical support for the online submission of final manuscripts on site.

Opening hours of the “Authors’ Area” (Room Escalette, 1st floor) are:

<table>
<thead>
<tr>
<th>Day</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>08 Sept 2019</td>
<td>16:00 – 18:00</td>
</tr>
<tr>
<td>Mon</td>
<td>09 Sept 2019</td>
<td>07:30 – 19:00</td>
</tr>
<tr>
<td>Tue – Thu</td>
<td>10 – 12 Sept 2019</td>
<td>08:00 – 19:00</td>
</tr>
</tbody>
</table>
INSURANCE

The organiser cannot be held responsible for injury to Conference attendees or for damage to or loss of their personal belongings, regardless of cause.

Attendees are advised to make their own insurance arrangements.

ACKNOWLEDGEMENTS

Committees, Supporters, Sponsors & Media Partners
INTERNATIONAL SCIENTIFIC ADVISORY COMMITTEE

Chair
Piotr Szymanski
European Commission Joint Research Centre, Director of Energy, Transport and Climate

Committee Members
Paolo Frankl, Head of the Renewable Energy Division, International Energy Agency, France
Maria Getsiou, European Commission DG RTD, Brussels, Belgium
Stefan W. Glunz, Head of Division “Solar Cells – Development and Characterization”, Fraunhofer ISE, Freiburg, Germany
Robert Kenny, European Commission Joint Research Centre, Institute for Energy and Transport, Ispra, Italy
Philippe Malbranche, General Director, CEA INES, France
Pietro Menna, European Commission DG ENER, Brussels, Belgium
Stefan Nowak, Managing Director of NET Nowak Energy & Technology, Switzerland
Wim Sinke, Principal Scientist Solar Energy, ECN part of TNO, The Netherlands
Marko Topič
Chairman ETIP PV - European Technology & Innovation Platform Photovoltaics, Head of Laboratory of Photovoltaics and Optoelectronics of the University of Ljubljana, Slovenia
Pierre Verlinden, Director at Amrock Pty Ltd, Visiting Professor at Sun Yat-Sen University, Guangzhou, China
Peter Helm, EU PVSEC Executive Director, WIP Renewable Energies, Munich, Germany
Angela Grassi, ETA-Florence Renewable Energies, Florence, Italy

EXECUTIVE COMMITTEE

Conference General Chair
Florence Lambert
Director of CEA Liten, (the Laboratory for Innovation in new Energy Technologies and Nanomaterials)

Technical Programme Chair
Robert Kenny, European Commission Joint Research Centre, Institute for Energy and Transport, Ispra, Italy

Committee Members
Heinz Ossenbrink, Former European Commission Joint Research Centre
Stefan Nowak, Managing Director of NET Nowak Energy & Technology, Switzerland
Wim Sinke, Principal Scientist Solar Energy, ECN part of TNO, The Netherlands
Peter Helm, EU PVSEC Executive Director, WIP Renewable Energies, Munich, Germany
Angela Grassi, ETA-Florence Renewable Energies, Florence, Italy

NATIONAL COMMITTEE

Chair
Philippe Malbranche, General Director, CEA INES

Deputy Chair
Daniel Lincot, Scientific Director, IPVF

Committee Members
David Marchal, ADEME, Deputy Director of Sustainable Energies
André J offre, Chairman of the DERBI competitiveness cluster
Richard Loyen, Enerplan, Secretary General
Alexandre Roesch, SER, Director General
SCIENTIFIC COMMITTEE

Topic Organisers
Franck Al Shakarchi, CEA / INES, Le Bourget-du-Lac, France
Oliver Anspach, PV Crystalox Solar, Erfurt, Germany
Ignacio Antón Hernández, UPM, Madrid, Spain
Hubert A. Aulich, SC Sustainable Concepts GmbH, Erfurt, Germany
Giorgio Bardizza, European Commission JRC, Ispra, Italy
Franz P. Baumgartner, ZHAW, Winterthur, Switzerland
Karsten Bothe, ISFH, Emmerthal, Germany
Dennis Bredemeier, ISFH, Emmerthal, Germany
Christian Breyer, Lappeenranta University of Technology, Finland
Claudia Buerhop-Lutz, HI REN, Erlangen, Germany
Julio Cárabe, CIEMAT, Madrid, Spain
Mariska de Wild-Scholten, SmartGreenScans, Groet, The Netherlands
Matthieu Despeisse, CSEM, Neuchâtel, Switzerland
Francesco Dolci, European Commission JRC, Petten, The Netherlands
Francesca Ferrazza, eni spa, San Donato Milanese, Italy
Giovanni Flamand, imec, Leuven, Belgium
Francesco Frontini, SUPSI, Canobbio, Switzerland
Maria Getsiou, European Commission DG RTD, Brussels, Belgium
Stefan W. Glunz, Fraunhofer ISE, Freiburg, Germany
Jan Christoph Goldschmidt, Fraunhofer ISE, Freiburg, Germany
Ralph Gottschalg, Fraunhofer CSP, Halle (Saale), Germany
Giso Hahn, University of Konstanz, Germany
Werner Herrmann, TÜV Rheinland Energy, Cologne, Germany
Louise Hirst, University of Cambridge, Cambridge, United Kingdom
Peter Lechner, ZSW, Stuttgart, Germany
Philippe Malbranche, CEA, Le Bourget du Lac, France
Antonio Martí Vega, UPM, Madrid, Spain
Gaetan Masson, Becquerel Institute, Brussels, Belgium
Urs Muntwyler, BUAS, Burgdorf, Switzerland
Gerhard Mütter, Alternative Energy Solutions, Vienna, Austria
Sylvain Nicolay, CSEM, Neuchâtel, Switzerland
Thomas Nordmann, TNC Consulting, Feldmeilen, Switzerland
Stefan Nowak, NET Nowak Energy & Technology, St. Ursen, Switzerland
Heinz Ossenbrink, Band Gap, Bad Feilnbach, Germany
Nicola Pearsall, Northumbria University, Newcastle upon Tyne, United Kingdom
Stefan Peters, Hanwha Q CELLS, Bitterfeld-Wolfen, Germany
Riccardo Po, eni, Novara, Italy
Jozef (Jef) Poortmans, imec, Leuven, Belgium
Christos Protogeropoulos, EEPS, Athens, Greece
Bernd Rech, HZB, Berlin, Germany
Alex Redinger, University of Luxembourg, Luxembourg
Stephan Riepe, Fraunhofer ISE, Freiburg, Germany
Pere Roca i Cabarrocas, CNRS, Palaiseau, France
Alessandra Scognamiglio, ENEA, Portici, Italy
Gerald Siefer, Fraunhofer ISE, Freiburg, Germany
Stephen Taylor, European Space Agency, Noordwijk, The Netherlands
Ayodhya Nath Tiwari, EMPA, Dübendorf, Switzerland
Marko Topič, University of Ljubljana, Slovenia
Laurent Torcheux, EDF R&D, Moret-sur-Loing, France
Wolfgang Tress, EPFL, Lausanne, Switzerland
Wilfried G.J.M. van Sark, Utrecht University, The Netherlands
Sjoerd Veenstra, ECN part of TNO, Eindhoven, The Netherlands
Karsten Wambach, Wambach-Consulting, Aindling, Germany
Arthur W. Weeber, ECN part of TNO, Petten, The Netherlands
Ingrid Weiss, WIP Renewable Energies, Munich, Germany
Wiltraud Wischmann, ZSW, Stuttgart, Germany
Peter Wohlfart, Singulus Technologies, Kahl am Main, Germany
Paper Review Experts
Steve Albrecht, HZB, Berlin, Germany
Cristina Alonso-Tristán, UBU, Burgos, Spain
Nekane Azkona, UPV/EHU, Bilbao, Spain
Kris Baert, KU Leuven, Heverlee, Belgium
Nicolas Barreaux, University of Nantes, France
Derk L. Bätzner, Meyer Burger Research, Haueterive, Switzerland
Guy Beaucarne, Dow Silicones, Seneffe, Belgium
Martin P. Bellmann, SINTEF, Trondheim, Norway
Malek Benmansour, CEA, Le Bourget du Lac, France
Veronica Bermudez Benito, QEERI, Doha, Qatar
Darina Blagoeva, European Commission JRC, Petten, The Netherlands
Philippe Blanc, MINES ParisTech, Paris, France
Pierluigi Bonomo, SUPSI, Canobbio, Switzerland
Christoph J. Brabec, FAU, Erlangen, Germany
Rolf Brendel, ISFH, Emmerthal, Germany
Roland Bründlinger, AIT, Vienna, Austria
Timothy Bruton, Progress in Photovoltaics, Woking, United Kingdom
Roberta Campesato, CESI, Milan, Italy
Christian Camus, LayTec, Berlin, Germany
Silvia Caneva, WIP Renewable Energies, Munich, Germany
Fabian Carigiet, ZHAW, Winterthur, Switzerland
Anna J. Carr, ECN part of TNO, Petten, The Netherlands
Alison Ciesla, UNSW Australia, Sydney, Australia
James Patrick Connolly, UPV, Valencia, Spain
Stéphane Cros, CEA, Le Bourget du Lac, France
Edwin Cunow, LSPV Consulting, Gröbenzell, Germany
Thomas Dalibor, Avancis, Torgau, Germany
Adrien Danel, CEA, Le Bourget du Lac, France
Bill Dauksher, Arizona State University, Tempe, USA
Michele de Bastiani, KAUST, Thuwal, Saudi Arabia
Paola Delli Veneri, ENEA, Portici, Italy
Aldo Di Carlo, University of Rome II, Italy
Bernhard Dimmler, NICE Solar Energy, Schwäbisch Hall, Germany
Doriana Dimova-Malinovska, Bulgarian Academy of Sciences, Sofia, Bulgaria
Sébastien Dubois, CEA, Le Bourget du Lac, France
Thorsten Dullweber, ISFH, Emmerthal, Germany
Ken Durose, Stephenson Institute for Renewable Energy, Liverpool, United Kingdom
Gabriele C. Eder, OFI, Vienna, Austria
Roland Einhaus, Apollon Solar, Lyon, France
Nicholas Ekins-Daukes, UNSW Australia, Sydney, Australia
Marco Ernst, ANU, Canberra, Australia
Peter Fath, RCT-Solutions, Konstanz, Germany
Wilfried Favre, CEA, Le Bourget-du-lac, France
Christopher Fell, CSIRO Energy Technology, Mayfield West, Australia
Gabi Friesen, SUPSI, Canobbio, Switzerland
Vasilis Fthenakis, Columbia University, New York, USA
Bruno Gaiddon, Hespul, Lyon, France
Stefan Gall, HZB, Berlin, Germany
William J. Gambogi, DuPont, Wilmington, USA
Ivan Gordon, imec, Leuven, Belgium
Jonathan Govaerts, imec, Genk, Belgium
Ana Maria Gracia Amillo, European Commission JRC, Ispra, Italy
Giorgio Graditi, ENEA, Portici, Italy
Matthias Grottke, Hammer Real, Munich, Germany
Daniela Guida, ENEL Green Power, Rome, Italy
Ingo Hagemann, Architekturbüro Hagemann, Aachen, Germany
Christian Hagendorf, Fraunhofer CSP, Halle (Saale), Germany
Jan Haschke, EPFL, Neuchâtel, Switzerland
Claas Helmke, Clake Energy, Erfurt, Germany
M. Angeles Hernandez-Fenollosa, UPV, Valencia, Spain
Bert Herteleer, Ekistica, Alice Springs, Australia
Karl Hesse, Wacker Chemie, Burghausen, Germany
Yoshihiro Hishikawa, AIST, Tsukuba, Japan
Jörg Horzel, CSEM, Neuchâtel, Switzerland
Shujuan Huang, UNSW Australia, Sydney, Australia
Kees Hummelen, University of Groningen, Groningen, The Netherlands
Stuart J. C. Irvine, Swansea University, St. Asaph, United Kingdom
Shogo Ishizuka, AIST, Tsukuba, Japan
Ulrike Jahn, TÜV Rheinland Energy, Cologne, Germany
Gaby J. M. Janssen, ECN part of TNO, Petten, The Netherlands
Joachim John, imec, Leuven, Belgium
Kai-Philipp Kairies, RWTH Aachen University, Germany
Izumi Kaizuka, RTS Corporation, Chuo-ku, Japan
Jeff Kettle, University of Bangor, Bangor, United Kingdom
Victor Khorenko, AZUR SPACE, Heilbronn, Germany
Richard King, Arizona State University, Tempe, USA
Jean-Paul Kleider, CNRS, Gif sur Yvette, France
Jean Marie Klein, CEA, Le Bourget du Lac, France
Makoto Konagai, Tokyo City University, Japan
Dirk König, UNSW Australia, Sydney, Australia
Igor Konovalov, University of Applied Sciences Jena, Germany
Philipp Kratzert, Solibro, Bitterfeld-Wolfen OT Thalheim, Germany
Ana Rosa Lagunas, CENER, Sarriguren-Navarra, Spain
Kari Lappalainen, Tampere University, Finland
Julien Laurent, Vesuvius, Feignies, France
Martijn Lenes, Tempress, Vaassen, The Netherlands
Claude Lévy-Clément, CNRS, Thiais, France
Ching-Fuh Lin, NTU, Taipei, Taiwan
Mónica Lira-Cantú, CIN2, Barcelona, Spain
Juan Lopez-Garcia, European Commission JRC, Ispra, Italy
Martha Ch. Lux-Steiner, HZB, Berlin, Germany
Oliver Mayer, Garching, Germany
Paola Mazzucchelli, EUREC, Brussels, Belgium
Alexander Meeder, Geo-En Energy Technologies, Berlin, Germany
Johannes Meier, Meier Technologies, Berlingen, Switzerland
Axel Metz, Alzenau, Germany
Marc Meuris, imec, Genk, Belgium
Max Mittag, Fraunhofer ISE, Freiburg, Germany
Christos Monokroussos, TÜV Rheinland, Shanghai, China
Jens Moschner, KU Leuven, Heverlee, Belgium
Jörg Müller, Hanwa Q CELLS, Bitterfeld-Wolfen, Germany
Delfina Muñoz, CEA, Le Bourget du Lac, France
Miguel Angel Muñoz-García, UPM, Madrid, Spain
Nina Munzke, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
Ronald C.G. Naber, Tempress, Vaassen, The Netherlands
Henning Nagel, Fraunhofer ISE, Freiburg, Germany
Bonna Newman, ECN part of TNO, Petten, The Netherlands
Kensuke Nishioka, University of Miyazaki, Japan
Herman-Josef Nonnenmacher, Meyer Burger, Hohenstein-Ernstthal, Germany
Hartmut Nussbaumer, ZHAW, Winterthur, Switzerland
Christer Nyman, Solec, Porvoo, Finland
Yoshio Ohshita, Toyota Technological Institute, Nagoya, Japan
Yoshitaka Okada, University of Tokyo, Japan
Sener Oktik, Sisecam, Kocaeli, Turkey
Gernot Oreski, PCCL, Leoben, Austria
Alona Otaegi, UPV/EHU, Bilbao, Spain
Wolfram Palitzsch, Loser Chemie, Freiberg, Germany
David Patrick, Western Washington University, Bellingham, USA
Marion Perrin, Oscarlab, Bernin, France
Kristian Peter, ISC Konstanz, Germany
Kai Petter, Hanwha Q CELLS, Bitterfeld-Wolfen, Germany
Davide Polverini, European Commission DG GROWTH, Brussels, Belgium
Ralf Preu, Fraunhofer ISE, Freiburg, Germany
Inigo Ramiro, UPM, Madrid, Spain
Tjerk Reijenga, BEAR-iD, Gouda, The Netherlands
Angèle Reinders, University of Twente, Enschede, The Netherlands
Jan Remund, Meteotest, Bern, Switzerland
Jochen Rentsch, Fraunhofer ISE, Freiburg, Germany
Mauricio Richter, 3E, Brussels, Belgium
Francesco Roca, ENEA, Portici, Italy
Sandy Rodrigues, M-ITI, Funchal, Portugal
Alessandro Romeo, University of Verona, Italy
Kittessa T. Roro, CSIR, Pretoria, South Africa
Jatin Roy, IIT Kharagpur, India
Marin Rusu, HZB, Berlin, Germany
Tony Sample, European Commission JRC, Ispra, Italy
Jan Schmidt, ISFH, Emmerthal, Germany
Marion Schroedter-Homscheidt, German Aerospace Center, Wessling, Germany
Ruud E. I. Schropp, Utrecht University, Driebergen, The Netherlands
Martin C. Schubert, Fraunhofer ISE, Freiburg, Germany
Eva Schüpbach, BUAS, Burgdorf, Switzerland
Manajit Sengupta, NREL, Golden, USA
Carla Signorini, University of Pisa, Italy
Kostas Sinapis, SEAC, Eindhoven, The Netherlands
Ronald Sinton, Sinton Instruments, Boulder, USA
Volker Sittinger, Fraunhofer IST, Braunschweig, Germany
Lenneke H. Slooff, ECN part of TNO, Petten, The Netherlands
Joshua S. Stein, Sandia National Laboratories, Albuquerque, USA
Dirk Stellbogen, ZSW, Stuttgart, Germany
Sandor Szabol, European Commission JRC, Ispra, Italy
João Tavares Pinho, UFPA, Belém, Brazil
Takeshi Tayagaki, AIST, Tsukuba, Japan
Nigel Taylor, European Commission JRC, Ispra, Italy
Barbara Terheiden, University of Konstanz, Germany
Mirjam Theelen, TNO/Solliance, Eindhoven, The Netherlands
Marios Theristis, University of Cyprus, Nicosia, Cyprus
Gianluca Timò, RSE, Piacenza, Italy
Rasit Turan, METU, Ankara, Turkey
Eva Unger, HZB, Berlin, Germany
Roland M. E. Valckenborg, SEAC, Eindhoven, The Netherlands
Mike Van Iseghem, EDF R&D, Moret-sur-Loing, France
John van Roosmalen, ECN part of TNO, Petten, The Netherlands
Pierre J. Verlinden, Amrock, McLaren Vale, Australia
Michael Vetter, IPHT, Jena, Germany
Marta Victoria, Aarhus University, Aarhus, Denmark
Alessandro Virtuani, EPFL, Neuchâtel, Switzerland
Eszter (Esther) Voroshazi, imec, Leuven, Belgium
Andreas Wade, First Solar, Mainz, Germany
Qi Wang, Jinko Solar, Haining, China
Wilhelm Warta, Fraunhofer ISE, Freiburg, Germany
Akira Yamada, Tokyo Institute of Technology, Japan
Selcuk Yerci, METU, Ankara, Turkey
David Young, NREL, Golden, USA
Jun Zhao, Meyer Burger, Hohenstein-Ernstthal, Germany
ACKNOWLEDGEMENTS

INSTITUTIONAL SUPPORT

With the support of UNESCO’s Natural Sciences Sector

WCRC – World Council for Renewable Energy

COORDINATION OF THE TECHNICAL PROGRAMME

INSTITUTIONAL PV INDUSTRY COOPERATION

SUPPORTING ORGANISATIONS

SUPPORTING ASSOCIATIONS
ACKNOWLEDGEMENTS

WE THANK OUR EU PVSEC 2019 SPONSORS

Sponsors

EU PVSEC

Supporters

EU PVSEC
## PLENARY SESSIONS

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1AP.1</td>
<td>Routes to High Efficiency in Photovoltaics</td>
<td>6</td>
</tr>
<tr>
<td>2BP.1</td>
<td>Silicon PV Highlights</td>
<td>32</td>
</tr>
<tr>
<td>3EP.1</td>
<td>Perovskites, Organic, CIGS and III-V Multi-Junction Devices</td>
<td>49</td>
</tr>
<tr>
<td>4DP.1</td>
<td>Measurement, Reliability and Sustainability</td>
<td>68</td>
</tr>
<tr>
<td>5DP.2</td>
<td>PV Systems and Storage</td>
<td>68</td>
</tr>
<tr>
<td>6EP.1 / 7EP.2</td>
<td>PV Impacting Society</td>
<td>90</td>
</tr>
</tbody>
</table>

## ORAL SESSIONS

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1AO.1</td>
<td>Energy Conversion Mechanisms and Materials Characterisation</td>
<td>12</td>
</tr>
<tr>
<td>1AO.2</td>
<td>Conversion Efficiency Limits and Materials Characterisation</td>
<td>16</td>
</tr>
<tr>
<td>1AO.3</td>
<td>Light Management and Spectral Conversion</td>
<td>20</td>
</tr>
<tr>
<td>1BO.9</td>
<td>Novel Concepts for PV Modules</td>
<td>29</td>
</tr>
<tr>
<td>1BO.10</td>
<td>Novel Concepts for Materials and Solar Cells</td>
<td>35</td>
</tr>
</tbody>
</table>

## 2 Silicon Materials and Cells

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2AO.4</td>
<td>Defects in Crystalline Silicon</td>
<td>13</td>
</tr>
<tr>
<td>2AO.5</td>
<td>Crystallizing Silicon for Photovoltaics</td>
<td>17</td>
</tr>
<tr>
<td>2AO.6</td>
<td>Thin Silicon Solar Cells</td>
<td>21</td>
</tr>
<tr>
<td>2BO.1</td>
<td>PERX Silicon Cells</td>
<td>33</td>
</tr>
<tr>
<td>2BO.2</td>
<td>PolySi Passivating Contacts (I)</td>
<td>33</td>
</tr>
<tr>
<td>2BO.3</td>
<td>PolySi Passivating Contacts (II)</td>
<td>36</td>
</tr>
<tr>
<td>2BO.4</td>
<td>Advanced Concepts for Si-based Solar Cells</td>
<td>39</td>
</tr>
<tr>
<td>2CO.9</td>
<td>TC Os and Surface Passivation</td>
<td>46</td>
</tr>
<tr>
<td>2CO.10</td>
<td>Heterojunction Solar Cells</td>
<td>52</td>
</tr>
<tr>
<td>2CO.11</td>
<td>Heterojunction Solar Cells (II)</td>
<td>57</td>
</tr>
<tr>
<td>2CO.12</td>
<td>Characterisation &amp; Simulation of Si Cells (I)</td>
<td>62</td>
</tr>
<tr>
<td>2DO.5</td>
<td>Production Processes Silicon Solar Cells</td>
<td>77</td>
</tr>
<tr>
<td>2DO.6</td>
<td>Characterisation &amp; Simulation of Si Cells (II)</td>
<td>81</td>
</tr>
<tr>
<td>2EO.1</td>
<td>Manufacturing of Silicon Solar Cells</td>
<td>86</td>
</tr>
</tbody>
</table>

## 3 Perovskites, other Non-Silicon-Based Photovoltaics and Multi-Junction Devices

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3AO.7</td>
<td>Progress in CIGS Modules</td>
<td>14</td>
</tr>
<tr>
<td>3AO.8</td>
<td>New Concepts in Chelogenides</td>
<td>18</td>
</tr>
<tr>
<td>3AO.9</td>
<td>Buffers, Absorbers and Interfaces in CIGS Devices</td>
<td>22</td>
</tr>
<tr>
<td>3BO.8</td>
<td>III-V Cells for Space and Terrestrial Applications</td>
<td>40</td>
</tr>
<tr>
<td>3CO.5</td>
<td>Perovskite Based Photovoltaics (I)</td>
<td>45</td>
</tr>
<tr>
<td>3CO.6</td>
<td>Perovskite Based Photovoltaics (II)</td>
<td>51</td>
</tr>
<tr>
<td>3CO.7</td>
<td>Organic and Dye-Sensitised Devices / Optimization of Perovskite</td>
<td>56</td>
</tr>
<tr>
<td>3CO.8</td>
<td>Perovskite Silicon Tandem Devices</td>
<td>61</td>
</tr>
</tbody>
</table>

## 4 Photovoltaic Modules and BoS Components

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4BO.11</td>
<td>PV Module Design / Wind Load / Sooting</td>
<td>36</td>
</tr>
<tr>
<td>4BO.12</td>
<td>Induced Degradation</td>
<td>42</td>
</tr>
<tr>
<td>4BO.13</td>
<td>Module Aging and Degradation</td>
<td>42</td>
</tr>
<tr>
<td>4CO.1</td>
<td>Imaging Techniques and Characterisation</td>
<td>44</td>
</tr>
<tr>
<td>4CO.2</td>
<td>Outdoor Performance</td>
<td>50</td>
</tr>
<tr>
<td>4CO.3</td>
<td>Interconnects and Soldering</td>
<td>55</td>
</tr>
<tr>
<td>4CO.4</td>
<td>Module Materials</td>
<td>60</td>
</tr>
<tr>
<td>5DO.4</td>
<td>Inverter Design and Integration / Sustainability of PV Systems</td>
<td>71</td>
</tr>
</tbody>
</table>

## 5 PV Systems and Storage – Modelling, Design, Operation and Performance

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5BO.5</td>
<td>Performance of PV Systems</td>
<td>28</td>
</tr>
<tr>
<td>5BO.6</td>
<td>Imaging and Fault Detection in PV Systems</td>
<td>34</td>
</tr>
<tr>
<td>5BO.7</td>
<td>Sooting, Degradation and Failure Diagnosis of PV Systems</td>
<td>37</td>
</tr>
<tr>
<td>5CO.13</td>
<td>Microgrids, Grid Integration and Simulation of PV Systems</td>
<td>47</td>
</tr>
<tr>
<td>5DO.1</td>
<td>Solar Resource</td>
<td>70</td>
</tr>
<tr>
<td>5DO.2</td>
<td>Forecasting</td>
<td>75</td>
</tr>
<tr>
<td>5DO.3</td>
<td>Designing Systems for Specific Environments</td>
<td>80</td>
</tr>
</tbody>
</table>

## 6 PV Applications and Integration

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6CO.15</td>
<td>Smart PV and Prosumers</td>
<td>58</td>
</tr>
<tr>
<td>6CO.16</td>
<td>PV Systems Optimization</td>
<td>64</td>
</tr>
<tr>
<td>6DO.8</td>
<td>PV for Buildings</td>
<td>78</td>
</tr>
<tr>
<td>6DO.9</td>
<td>PV Integration in Non Conventional Application</td>
<td>82</td>
</tr>
<tr>
<td>6EO.2</td>
<td>Professional Applications of PV</td>
<td>87</td>
</tr>
</tbody>
</table>

## 7 Finance, Markets and Policies

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7DO.7</td>
<td>Lessons from Around the World</td>
<td>73</td>
</tr>
<tr>
<td>7EO.3</td>
<td>Economic and Market Analyses</td>
<td>89</td>
</tr>
</tbody>
</table>

## VISUAL SESSION

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1BV.3</td>
<td>Fundamental Studies / New Materials and Concepts for Cells and Modules</td>
<td>126</td>
</tr>
<tr>
<td>2CV.2</td>
<td>Feedstock, Crystallisation, Watering, Defect Engineering /Thin Film and Foli-Based Si Solar Cells /Characterisation &amp; Simulation</td>
<td>139</td>
</tr>
<tr>
<td>2DV.1</td>
<td>Heterojunction Solar Cells / Heterojunction Solar Cells</td>
<td>165</td>
</tr>
<tr>
<td>3BV.1</td>
<td>CIGS, CdTe and Related Thin Film Solar Cells / Related Compound Semiconductor Based Devices</td>
<td>111</td>
</tr>
<tr>
<td>3BV.2</td>
<td>Perovskites Based Photovoltaics / Organic and Dye-Sensitised Devices / Tandems</td>
<td>119</td>
</tr>
<tr>
<td>4AV.1</td>
<td>PV Module Design, Manufacture, Performance and Reliability (I)</td>
<td>95</td>
</tr>
<tr>
<td>4AV.2</td>
<td>PV Module Design, Manufacture, Performance and Reliability/ Inverters and Balance of System Components/Sustainability and Recycling</td>
<td>102</td>
</tr>
<tr>
<td>5CV.3</td>
<td>Solar Resource and Forecasting / Design and Installation of PV Systems / Storage / Concentrators and PV for Space Applications</td>
<td>151</td>
</tr>
<tr>
<td>5CV.4</td>
<td>Operation, Performance and Maintenance of PV Systems</td>
<td>157</td>
</tr>
<tr>
<td>6BV.4</td>
<td>PV on/ in Buildings, Infrastructure, Landscape, Water and Nature / Professional Applications of PV</td>
<td>130</td>
</tr>
<tr>
<td>6CV.1</td>
<td>PV Driven Energy Management and System Integration</td>
<td>136</td>
</tr>
<tr>
<td>7DV.2</td>
<td>CoC6: Economics, Finance and Markets / Policies and Scenarios for Renewables, Societal and Global Challenges</td>
<td>175</td>
</tr>
</tbody>
</table>
The most dynamic forum for the global PV Solar Sector

EU PVSEC Contact
WIP
Sylvensteinstr. 2
81369 München
Germany
Tel. +49-89-720 12 735
Fax +49-89-720 12 791
E-mail: pv.conference@wip-munich.de
pv.exhibition@wip-munich.de

Follow the EU PVSEC on:

www.photovoltaic-conference.com
www.photovoltaic-exhibition.com